

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ имени СЕРГО ОРДЖОНИКИДЗЕ

И.А. Доброхотова, П.В. Новиков, К.В. Новиков

ПРАКТИКУМ

ПО ИНТЕРПРЕТАЦИИ РЕЗУЛЬТАТОВ ПОЛЕВЫХ НАБЛЮДЕНИЙ В МЕТОДАХ ЭЛЕКТРОРАЗВЕДКИ

Учебное пособие для специальности 130201 «геофизические методы поисков и разведки месторождений полезных ископаемых» УДК 550.837(076.5)

И.А. Доброхотова, П.В. Новиков, К.В. Новиков. Практикум по интерпретации результатов полевых наблюдений в методах электроразведки. Учебное пособие. М.: РГГРУ, 2011.

Методическое пособие предназначено для студентов геофизиков 3 – 5 курсов. Оно включает в себя лабораторные работы и краткое изложение некоторых способов интерпретации данных электроразведки.

Ваши отзывы, пожелания и предложения присылайте по электронному адресу <u>egm.electro@gmail.com</u> или <u>mgri@yandex.ru</u>.

© И.А. Доброхотова, П.В. Новиков, К.В. Новиков

Оглавление

Введение 4 -
1. Нормальные электрические поля в методе сопротивлений 5 -
2. Расчет установки для работ методами сопротивлений 7 -
2.1. Расчет установки для симметричного электропрофилирования 7 -
2.2. Расчет установки для вертикального электрического
зондирования 8 -
3. Решение прямых задач и интерпретация данных вертикального
электрического зондирования (ВЭЗ) 9 -
3.1. Решение прямых задач в методе ВЭЗ 9 -
3.2. Интерпретация результатов ВЭЗ 13 -
3.3. Качественная интерпретация кривых ВЭЗ 21 -
4. Метод естественного электрического поля 27 -
4.1. Обработка результатов наблюдений в методе естественного поля
(съемка градиентов) 28 -
4.2. Интерпретация результатов полевых наблюдений в методе
естественного поля 32 -
5. Интерпретация результатов полевых наблюдений в методе заряженного
тела (МЗТ) 34 -
5.1. Интерпретация МЗТ на рудных объектах 34 -
5.2. МЗТ на гидрогеологических объектах 36 -
6. Метод вызванной поляризации 38 -
6.1. Поверхностная и объемная поляризация тел, имеющих
изометричную форму 38 -
6.2 Расчет кажущейся поляризуемости 39 -
6.3. Способы интерпретации результатов полевых наблюдений методом
ВП41 -
7. Метод переходных процессов 44 -
7.1. Горизонтально-слоистая среда 44 -
7.2. Локальный объект 46 -
8. Метод незаземленной петли 48 -
8.1. Интерпретация результатов метода НП 48 -
8.2. Проводящий немагнитный объект 49 -
8.3. Проводящий и магнитный объект 51 -
9. Итоговое задание 54 -
Список литературы 62 -

Введение

Электроразведка – один из ведущих геофизических методов, применяемых при геологоразведочных работах для решения широкого круга геологических задач, характеризуется многообразием методов, их модификаций, разветвленностью вариантов и методик. Каждый отдельный метод и каждая модификация метода или его вариант отличаются не только методикой полевых работ, но и имеют свою специфику обработки и интерпретации результатов полевых наблюдений.

В основном курсе электроразведки, преподаваемом в Российском Государственном Геологоразведочном Университете имени Серго Орджоникидзе для студентов геофизических специальностей на III – IV курсах, излагаются лишь способы интерпретации для наиболее распространенных из применяющихся в настоящее время методов электроразведки. Более глубокое изучение теоретических основ методов и знакомство с методами, применяющимися для решения более узкого круга задач, так же как и изучение связанных с этими методами вопросов интерпретации, осуществляется на старших курсах (IV – V) в рамках курсов по специализациям.

Настоящее учебное пособие предназначено для студентовгеофизиков, изучающих как основной курс, так и спецкурс электроразведки, и охватывает вопросы, связанные с интерпретацией результатов полевых наблюдений для методов постоянного поля (электропрофилирование, ВЭЗ, метод заряженного тела, метод естественного поля), переменного поля (низкочастотные индуктивные методы) и нестационарных полей (метод вызванной поляризации, метод переходных процессов в варианте совмещенных петель и автономной рамки). Оно может быть использовано студентами других вузов и техникумов, осваивающих геофизические специальности, а также студентами-геологами, изучающими геологические дисциплины. Кроме того, оно может быть полезным для инженеров и техников геофизических организаций, особенно те его части, которые касаются методов, слабо освещенных в учебной и научной литературе, но достаточно широко распространенных.

1. Нормальные электрические поля в методе сопротивлений

Для того чтобы по наблюдаемому электрическому полю можно было судить о геоэлектрическом разрезе, следует в процессе интерпретации сравнить между собой наблюденное поле и поле над известным геоэлектрическим разрезом для того же источника, рассчитанным теоретически. Чаще всего наблюденное поле сравнивают с полем источника над однородным полупространством, которое и называют *нормальным полем*.

В методах электроразведки постоянными полями, в частности, в методах сопротивлений, наиболее часто применяемыми источниками возбуждающего электрического поля являются точечные и дипольные источники. Питающими установками в этих случаях являются установки с одним питающим электродом A (второй электрод B отнесен на расстояние, в 10–15 раз превышающее расстояние от точки наблюдения до электрода A), с двумя питающими электродами A и B и дипольные установки, когда расстояние между питающими электродами, во много раз меньше расстояния до точки наблюдения.

Чтобы иметь представление о характере электрического поля, возбуждаемого этими источниками в однородном полупространстве, предлагается рассчитать напряженность электрического поля E и потенциал Uдля этих источников на поверхности однородного полупространства, заполненного средой с удельным электрическим сопротивлением ρ . Оценку глубинности исследования при работе с точечными, двухточечными и дипольными установками можно произвести на основании анализа зависимости между плотностью тока на поверхности полупространства для какойлибо точки наблюдения x и плотностью тока в точке, расположенной на глубине h под точкой наблюдения x (на расстоянии A по вертикали, проходящей через точку наблюдения x).

U	Е	
$U = \frac{I\rho}{2\pi x}$	$\mathbf{E} = \frac{I\rho}{2\pi x^2}$	(точечный источник)
$U = \frac{I\rho}{2\pi} \left(\frac{1}{ x } - \frac{1}{ L-x } \right)$	$\mathbf{E} = \frac{I\rho}{2\pi} \left(\frac{x}{\left x \right ^{3}} - \frac{L - x}{\left L - x \right ^{3}} \right)$	(двухточечный источник);
$U = \frac{I\rho l}{2\pi x^2}$	$\mathbf{E} = \frac{I\rho l}{2\pi x^3}$	(дипольный источник),

Для этого следует воспользоваться формулами:

где ρ – удельное электрическое сопротивление однородного полупространства; **Е** – напряженность электрического поля; *U* – потенциал электрического поля; *I* – сила тока в питающей установке; *x* – расстояние от источника *A* или центра диполя до точки наблюдения; *L* – расстояние между питающими электродами *A* и *B* (*l* – для диполя).

Рис. 1.1. Графики потенциала *U* и напряженности **E** нормального электрического поля двух полусферических заземлений.

Выражения для плотности тока будут выглядеть следующим образом:

(точечный источник);

(двухточечный источник);

(дипольный источник),

 $\mathbf{j} = \frac{ll}{2\pi (x^2 + h^2)} \sqrt{1 + 3\frac{x^2}{(x^2 + h^2)}}$ где **j** – плотность тока в среде; *h* – глубина.

<u>Задание</u>

 $\mathbf{j} = \frac{I}{2\pi (h^2 + x^2)}$

 $\mathbf{j} = \frac{I\frac{L}{2}}{\pi \left(\left(\frac{L}{2}\right)^2 + h^2\right)^{3/2}}$

- Рассчитать потенциал и напряженность электрического поля на поверхности однородного полупространства; принять *I*=1 A; ρ=50 Ом⋅м, AB=100 м, 200 м, 300 и; расстояние до точки наблюдения меняется от 50 до 350 м о шагом 10 м; начало координат совместить с точкой *A*.
- 2. Построить и проанализировать графики изменения *U* и **E** вдоль профиля наблюдения.

- 3. Рассчитать отношение плотности тока на глубине $h \mathbf{j}_h$ к плотности тока на поверхности наблюдения \mathbf{j}_0 .
- 4. Построить график зависимости $\mathbf{j}_h/\mathbf{j}_0$ от глубины *h* для случаев:
 - а. АВ=*L*=100 м; *x*=50 м;
 - b. AB=*L*=150 м; *x*=100 м;
 - с. AB=*L*=200 м; *x*=150 м.
- 5. Проанализировать построенные графики и сделать выводы о зависимости глубинности исследования от расстояния между источником поля и точкой его наблюдения.

Контрольные вопросы:

- 1. Какое поле называют нормальным?
- 2. Что такое потенциал и напряженность электрического поля и как они связанны между собой?
- 4. Что такое плотность тока?
- 5. Какие бывают источники электрического поля?

2. Расчет установки для работ методами сопротивлений

2.1. Расчет установки для симметричного электропрофилирования

Перед началом полевых работ методом симметричного электропрофилирования в новом районе инженер-геофизик, руководящий работами, должен произвести расчет установки, т.е. определить:

- 1. Длину питающей и приемной линий.
- 2. Тип и марку провода, требующегося для монтажа питающей и приемной установок.
- Ток, который необходимо пропускать в питающей цепи, чтобы создать на приемных электродах разность потенциалов ΔU_{MN}, уверенно измеряемую имеющейся в партии геофизической аппаратурой в условиях помех, характерных для данного района работ.
- 4. Определить тип источника, который нужно подключить в питающую линию.
- 5. Заглубление электродов и их число в сложном заземлении, которые необходимо смонтировать таким образом, чтобы сопротивление линии АВ было не слишком велико и дало возможность работать с выбранным источником тока в цепи *АВ*. Для выполнения этих расчетов следует произвести следующие работы:
 - а. Используя известные или предполагаемые сведения об электрических и геометрических характеристиках разреза, постро-

- b. Определить сопротивление проводов линии *AB*.
- с. Выбрать разносы *MN* в соответствии с инструкцией по электроразведке ч. I и сообразуясь с масштабом работ.
- d. Оценить ток в цепи *AB* по формуле: $I = k \frac{\Delta U}{\rho_k}$, ρ_{κ} минимальное

значение кажущегося удельного сопротивления, измеряемого при выбранных разносах AB (оценить также по построенным графически кривым ВЭЗ); ΔU – минимальная, измеряемая уверенно с аппаратурой данного типа разность потенциалов (с учетом помех, типичных для района работ);

е. Построить графики зависимости сопротивления одиночного стержневого электрода от глубины забивки его и от радиуса электрода и на основании этих графиков выбрать радиус электрода и глубину его забивания. Сопротивление для стержневого электрода рассчитывается по формуле:

$$R_{\rm s} = \frac{\rho}{2\pi a} \ln \frac{2a}{b}$$

где, *а* – длина забитой в землю части электрода, *b* – его радиус

 f. Выбрать источник для производства работ таким образом, чтобы обеспечить в питающей цепи ток, не меньший, чем оцененный по формуле ρ_к.

Задание

Произвести расчет установки для симметричного электропрофилирования с целью картирования кровли высокоомного маркирующего горизонта, представленного известняками с удельным электрическим сопротивлением р=900 Ом·м. Мощность покровных отложений на участке работ колеблется в пределах 150–200 м. Удельное электрическое сопротивление этих отложений составляет в среднем 80 Ом·м.

Аппаратура, которая имеется в партии, производящей работы, и уровень помех в районе обеспечивают уверенные изменения разности потенциалов от 10 мВ.

Нарисовать монтажную схему установки.

2.2. Расчет установки для вертикального электрического зондирования

Расчет установки для производства работ методом вертикального электрического зондирования (ВЭЗ) включает в себя те же элементы, что и расчет установки для электропрофилирования и производится с учетом тех же соображений (см. п. 2.1.).

Длину провода *AB*, требующегося для намотки на катушки питающей линии, следует выбрать таким образом, чтобы зондирование производилось до выхода кривых на асимптотические значения.

<u>Задание</u>

Рассчитать установку для производства работ методом ВЭЗ на участке, где имеются четыре опорные скважины, вскрывшие два горизонта: перекрывающую осадочную толщу, удельное электрическое сопротивление которой по данным каротажа составляет 120 Ом·м, и подстилающий горизонт с удельным электрическим сопротивлением 840 Ом·м. Глубина до нижнего горизонта по скважинам 1–4 составляет соответственно 25, 30, 42 и 18 м. Нарисовать монтажную схему установки.

Контрольные вопросы:

- 1. Какие существуют методы сопротивлений?
- 2. Какие виды установок применяют в методах сопротивлений?
- 3. Почему в методах сопротивлений измерения ведутся в средней трети установки *АВ*?
- 4. Как выбирается разнос измерительной линии MN.
- 5. На что влияет заглубление электродов линии *АВ*? Линии *MN*?
- 6. Как влияет очень высокое сопротивление заземления приемной цепи на результаты измерений?

3. Решение прямых задач и интерпретация данных вертикального электрического зондирования (ВЭЗ)

3.1. Решение прямых задач в методе ВЭЗ

3.1.1. Расчет кажущегося сопротивления для двухслойного геоэлектрического разреза

При графическом построении двухслойной кривой ВЭЗ, характеризующей заданный двухслойный геоэлектрический разрез с параметрами ρ_1 , h_1 , ρ_2 , можно использовать двухслойную палетку ВЭЗ, приведенную на рис. 3.1.

Палетка представляет собой набор теоретических двухслойных кривых ВЭЗ, рассчитанных по формуле:

$$\rho_{k} = \rho_{1} \left\{ 1 + 2 \sum_{n=1}^{\infty} \frac{k_{12}^{n} \left(\frac{AB}{2h_{1}} \right)^{3}}{\left[\left(\frac{AB}{2h_{1}} \right)^{2} + 4n^{2} \right]^{3/2}} \right\}$$
(3.1)

где $k_{12} = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}$, и построенных в двойном логарифмическом масштабе.

Последнее обстоятельство обуславливает зависимость формы кривых только от отношения удельных сопротивлений нижнего и верхнего горизонтов $\frac{\rho_2}{\rho_1} = \mu$. Поэтому все теоретические кривые на палетке индексиро-

ваны значениями $\mu = \frac{\rho_2}{\rho_1}$.

Как следует из формулы (3.1) и видно из рисунка 3.1., левая асимптотическая ветвь двухслойной кривой ВЭЗ стремится к ρ_1 , а правая асимптотическая ветвь стремится к значению ρ_2 . Теоретические кривые построены для значений $\rho_1=1$ (горизонтальная ось палетки) и $h_1=1$. (вертикальная ось палетки). Реальные значения h_1 лишь изменяют положение кривой ВЭЗ, соответствующей данному разрезу, вдоль оси абсцисс (оси, по которой откладывается полуразнос AB/2), а конкретные значения ρ_1 – положение кривой вдоль оси ординат – (оси, по которой откладывается значение ρ_k).

Правила графического построения двухслойных кривых ВЭЗ с помощью двухслойной палетки теоретических кривых можно сформулировать следующим образом:

- На прозрачный билогарифмический бланк с модулем, соответствующим модулю палетки (6,25), наносятся в виде крестика параметры первого горизонта ρ₁h₁
- 2. Вычисляется значение $\mu = \frac{\rho_2}{\rho_1}$, соответствующее заданному разрезу.
- Прозрачный билогарифмический бланк накладывается на двухслойную палетку таким образом, чтобы крест р₁h₁ совместился с началом координат палетки, а оси абсцисс и ординат оставались параллельными.
- На прозрачный бланк переносится теоретическая кривая с индексом μ, соответствующим заданному отношению ρ₂/ρ₁. Если кривой с таким индексом нет; она находится с помощью интерполяции (в логарифмическом масштабе).

В современной электроразведке палетки уже не применяются, а используются специализированные программные пакеты, однако, используя математические программы или даже макросы к электронным таблицам, несложно рассчитать двухслойные кривые ВЭЗ по формуле (3.1).

Рис. 3.1. Набор теоретических двухслойных кривых ВЭЗ.

Задание

В разрезе, представленном на рисунке 3.2-а первый горизонт сложен аллювиальными отложениями четвертичного возраста. Второй горизонт, представленный известняками, вскрыт скважинами на глубинах от 10 до 55 метров.

По данным петрофизических исследований и каротажа удельное электрическое сопротивление песков составляет 120 Ом·м, плотного известняка – 1440 Ом·м, мергеля – 640 Ом·м, глин, алевролитов – 80 Ом·м.

Рис. 3.2. Геологические разрезы.

Построить двухсловные кривые ВЭЗ и геоэлектрический разрез, соответствующие геологическим ситуациям, изображенным на разрезах (рис. 3.2 а и б) путем построения кривой с помощью палетки или рассчитать по формуле (3.1).

Контрольные вопросы:

- 1. Что такое кажущееся и удельное электрическое сопротивление? В чем разница между ними?
- 2. Какие петрофизические параметры могут влиять на удельное электрическое сопротивление (УЭС) пород?
- 3. Что показывает коэффициент µ для двухслойной палетки?

3.1.1. Расчет кажущегося сопротивления для трехслойного и многослойного разреза

Из решения прямой задачи для *n*-слойной горизонтально-слоистой средыможно получить формулу для кажущегося сопротивления:

$$\rho_{\rm k} = \rho_1 r^2 \int_0^\infty R_m I_1(mr) dm$$

где r – расстояние от точки наблюдения до источника; $I_1(mr)$ – функция Бесселя первого порядка, m – переменная интегрирования, R – фунция влияния среды (ядерная функция, кернел-фукция), которую можно представить в виде суммы гиперболических функций.

$$R = \operatorname{th}\left\{ mh_{1} + \operatorname{arth} \frac{\rho_{2}}{\rho_{1}} \operatorname{th}\left[mh_{2} + \operatorname{arth} \frac{\rho_{3}}{\rho_{2}} \operatorname{th}\left[mh_{3} + \dots + \frac{\rho_{n}}{\rho_{n-2}} \operatorname{th}\left(mh_{n-1} + \operatorname{arth} \frac{\rho_{n}}{\rho_{n-1}} \right) \right] \right\}$$

Кажущееся сопротивление на поверхности *n*-слойной горизонтальнослоистой среды так же можно представить в виде суммы бесконечного ряда:

$$\rho_{k} = \rho_{1} \left\{ 1 + 2 \sum_{n=1}^{\infty} \frac{q_{n} r^{3}}{\left[r^{2} + (2nh)^{2} \right]^{3/2}} \right\}$$

где r – расстояние от точки наблюдения до источника; q_n – коэффициент эмиссии, зависящий от соотношений удельных сопротивлений отдельных слоев, h – общая мощность слоев геоэлектрического разреза, ρ_1 – удельное электрическое сопротивления первого слоя.

Контрольные вопросы:

- 1. Как по форме кривой можно определить количество слоев в геоэлектрическом разрезе?
- 2. Какие бывают типы трехслойных кривых?
- 3. Как обозначаются четырехслойные и многослойные кривые?

3.2. Интерпретация результатов ВЭЗ.

Интерпретацию результатов вертикального электрического зондирования проводят с целью получения по данным ВЭЗ геологической информации.

Качественная интерпретация ВЭЗ позволяет получить общее представление о геологическом строении района, и может проводиться различными способами, такими как сравнительный анализ и построение карт

¹ Формула справедлива только когда $\rho_1 < \rho_{n-1}$, а когда $\rho_1 > \rho_{n-1}$ th необходимо заменить cth.

кривых ВЭЗ, построение вертикальных разрезов кажущихся сопротивлений, карт изоом, карт равных значений *S* и *T* и т.д.

Количественная интерпретация проводится для установления параметров геоэлектрического разреза – мощности и удельного электрического сопротивления горизонтов.

Ранее вся интерпретация проводилась вручную, при помощи наборов теоретических кривых (палеток), и была достаточно трудоемка. С появлением ЭВМ интерпретация и моделирование стали проводиться с помощью специальных программ. Алгоритмов компьютерной интерпретации довольно много, и они широко освещены в специальной литературе. Одной из первых работ в этом направлении можно считать монографию голландского геофизика О. Куфуда «Зондирование методом сопротивлений», вышедшую в 1984 году. Однако стоит отметить, что большинство алгоритмов интерпретации сводится подбору теоретической кривой и сравнению ее с экспериментальной (полевой).

3.2.1. Ручная интерпретация данных

Ручная интерпретация двухслойных кривых ВЭЗ

Интерпретация двухслойных кривых ВЭЗ с помощью палетки (рис 3.1.) теоретических двухслойных кривых сводится к следующему:

- 1. Строят экспериментальную (полевую) кривую ВЭЗ на прозрачном бланке в двойном логарифмическом масштабе.
- 2. Соблюдая параллельность осей абсцисс и ординат, совмещают наилучшим образом экспериментальную кривую с одной из теоретических кривых на двухслойной палетке.
- В положении наилучшего совмещения переносят на бланк линии и h₁ (начало координат) двухслойной палетки и считывают с оси абсцисс против линии h₁, значение мощности первого горизонта, а против линии ρ₁; на оси ординат – значение удельного сопротивления первого горизонта ρ₁.
- 4. Величину удельного сопротивления второго горизонта ρ₂ определяют либо по асимптотическому значению правой ветви кривой, либо по индексу μ той теоретической кривой, с которой совпадала экспериментальная.

<u>Задание</u>

 Для заданных двухслойных кривых ВЭЗ, представленных на рис. 3.3. определить параметры ρ₁, h₁ и ρ₂ и построить геоэлектрический разрез.

Расстояние между точками зондирования (ВЭЗ №1, ВЭЗ №2, ВЭЗ №3, ВЭЗ №4) составляют 500 м.

- 2. Построить кривые ВЭЗ по данным, приведенным в таблице 3.1. и провести их интерпретацию и построить геоэлектрический разрез.
- 3. Сравните полученные геоэлектрические разрезы и кривые ВЭЗ.

Рис. 3.3. Графики ρ_{κ} ВЭЗ.

Таблица 3.1.

A D/2 M			ρ_κ, Ом ∙м	[
AD/2, M	ВЭЗ-1	ВЭЗ-2	ВЭЗ-3	ВЭЗ-4	ВЭЗ-5
3	104	119	206	214	246
4,5	109	122	217	233	280
6	117	128	234	259	325
9	142	148	281	325	423
15	205	204	387	453	591
25	308	301	528	612	785
40	435	422	670	762	959
65	593	571	805	899	1110
100	744	712	901	990	1205
150	880	835	964	1047	1261
225	995	938	1002	1080	1293
325	1074	1007	1022	1097	1309
500	1134	1059	1034	1107	1317

Ручная интерпретация трехслойных кривых ВЭЗ (р₂ – известно)

Интерпретация трехслойных кривых базируется на принципе эквивалентности и заключается в сопоставлении экспериментальной и теоретической кривой.

Принцип эквивалентности гласит, что над трехслойными разрезами одного типа, но с различными параметрами промежуточного (второго) горизонта, могут быть получены одинаковые кривые ВЭЗ.

Для трехслойных кривых типа H и A условием эквивалентности будет являться постоянство продольной проводимости S второго горизонта, т.е. $S_2 = \rho_2 / h_2 = \text{const.}$

Для трехслойных кривых типа *K* и *Q* условием эквивалентности будет являться постоянство поперечного сопротивления T второго горизонта, т.е. $T_2 = \rho_2 h_2 = \text{const.}$

Физически это объясняется тем, что при переходе из одного пласта в другой ток стремится течь либо вдоль напластования (H и A), либо поперек (K и Q).

Палеточная интерпретация сводится к следующему:

- с помощью двухслойной палетки по левой ветви трехслойной кривой определяют ρ₁h₁ и μ;
- 2. по асимптотическим значениям правой ветви оценивают р₃
- 3. выбирают семейство кривых для производства дальнейшей интер-

претации, составляя шифр семейств $H - \mu' - \left(\frac{\rho_3}{\rho_1}\right)'$, где H - тип кри-

вой; μ' – палеточное значение μ , ближайшее к определенному в п.1 и выбранное по ключу альбома палеток, расположенному на первой странице альбома; $(\rho_3/\rho_1)'$ – ближайшее к определенному выше, палеточное значение отношения удельных сопротивлений третьего и первого горизонтов;

- накладывают на выбранное семейство кривых бланк с интерпретируемой кривой, добиваясь наилучшего совмещения левой и средней части кривой с одной из теоретических. В этом положении переносят на бланк линии ρ₁ и h₁, уточняя тем самым значения удельного электрического сопротивления и мощности первого горизонта, определенные выше (п.1), а затем определяют по индексу теоретической кривой, совпавшей с экспериментальной, значение v;
- 5. вычисляют значение мощности второго горизонта h_2 по формулам:

$$h_2 = rac{
u h_1}{\mu
ho_1}
ho_2$$
 для кривых типа *H* и *A*;
 $h_2 = rac{
u \mu h_1
ho_1}{
ho_2}
ho_2$ для кривых типа *K* и *Q*.

<u>Задание</u>

- 1. Построить кривые ВЭЗ по данным в таблице 3.2 и 3.3.
- 2. Определить тип кривых.
- 3. Найти удельные сопротивления и мощности, характеризующие трехслойный разрез, над которым были получены данные кривые.
- 4. Построить геоэлектрические разрезы, учитывая, что расстояние между точками зондирования 100 м.

Таблица 3.2.

$\Delta D/2 M$		ρ _κ , Ом·м	и, (ρ2=12	2 Ом•м).	
AD/2, M	ВЭЗ-1	ВЭЗ-2	ВЭЗ-3	ВЭЗ-4	ВЭЗ-5
1,5	66	62	66	62	64
3	51	39	52	43	49
4,5	38	24	36	28	36
6	28	20	26	22	28
9	19	19	24	21	20
15	20	27	32	27	23
25	29	42	50	41	33
40	42	71	79	64	50
65	70	116	108	97	71
100	101	174	142	124	97
150	136	239	172	159	128

Таблица3.3.

$\Delta D/2 M$		р _к , Ом∙м	ι, (ρ2=20	0 Ом·м)	•
AD/2, M	ВЭЗ-1	ВЭЗ-2	ВЭЗ-З	ВЭЗ-4	ВЭЗ-5
1,5	40	41	44	42	39
3	46	47	59	52	42
4,5	58	54	73	68	48
6	68	63	89	80	55
9	80	75	105	90	65
15	78	80	112	75	85
25	60	70	90	50	85
40	35	44	52	24	65
65	20	23	28	16	40
100	18	17	20	14	22
150	16	15	18	14	18

Ручная интерпретация трехслойных кривых ВЭЗ (р₂ – неизвестно)

Если удельное сопротивление промежуточного горизонта ρ_2 неизвестно, то в силу принципа эквивалентности, определять мощность второго го горизонта – h_2 нельзя. В этом случае исследователь может оценить те

пределы, в которых могут меняться величины ρ_2 и h_2 , либо остановиться на определении величины $S_2 = \frac{\nu h_1}{\mu \rho_1}$ или $T_2 = \nu \mu h_1 \rho_1$.

Оценка может производиться с помощью диаграмм Пылаева или на компьютере. В первом случае сводиться к следующему:

- оцениваются значения удельного электрического сопротивления и мощности первого горизонта ρ₁h₁, удельного сопротивления третьего горизонта ρ₃ и величины μ и ν по правилам, изложенным в п. 3.2.2.
- 2. Берется диаграмма Пылаева (рис 3.4.), соответствующая типу кривой (H, A, K или Q) на которую наноситься точка с координатами µ и v, определенными ранее.

Рис. 3.4. Диаграмма Пылаева для разрезов типа К.

- 3. Через эту точку проводится линия, параллельная пунктирным линиям диаграммы (линиям S и T) до пересечения с левой и правой кривыми, ограничивающими область действия принципа эквивалентности.
- Ординаты точек пересечения показывают пределы, ограничивающие возможные колебания значений v искомого разреза, а абсциссы тех же точек покажут пределы возможных колебаний µ искомого разреза:

$$\nu' < \nu < \nu''$$

 $\mu' < \mu < \mu''$

 Домножив верхнее неравенство на найденное ранее значение h₁, а нижнее – на найденное ранее значение ρ₁, найдем пределы возможных изменений сопротивления и мощности второго горизонта для искомого разреза (...m< h₂<n, ρ<ρ₂<q).

В большинстве программных пакетов оценка пределов изменения параметров ρ_2 и h_2 производиться путем подбора, либо автоматически, либо интерактивно оператором.

<u>Задание</u>

Оценить пределы возможных изменений удельного электрического сопротивления и мощности второго горизонта для разреза, над которым получены кривые ВЭЗ, приведенные в таблицах

Контрольные вопросы:

- 1. Каких типов бывают трехслойные кривые ВЭЗ? Какие геоэлектрические разрезы им соответствуют?
- 2. Сформулируйте принцип эквивалентности.

3.2.2. Компьютерная интерпретация данных ВЭЗ

Компьютерная интерпретация двухслойных кривых ВЭЗ

Интерпретация двухслойных кривых осуществляется следующим образом:

- 1. Ввод кривой ρ_к (*AB*/2, ρ_к) на экране, как правило, появляется кривая.
- 2. Составление стартовой модели геоэлектрического разреза, то есть задание ρ₁, ρ₂ и *h*₁ по виду полевой кривой, на основе опыта интерпретатора или предыдущих моделей.
- Расчет двухслойной теоретической кривой ρ_к ВЭЗ, на основании созданной модели. Получено 2 кривых – теоретическая и полевая (экспериментальная).
- 4. Сравнение теоретической и полевой кривой. Исправление геоэлектрической модели на основании сарвнения.
- 5. Продолжение цикла (3-4) до совпадения теоретической и полевой кривой с заданной точностью.
- 6. Последняя модель является искомым геоэлектрическим разрезом.

Примечание: кроме двухслойного геоэлектрического разреза, как правило, строится еще разрез кажущихся сопротивлений.

Компьютерная интерпретация трехслойных кривых ВЭЗ

В зависимости от того известно или не известно ρ_2 , интерпретация осуществляется несколько по-разному.

При ρ_2 – известно:

1. Ввод кривой $\rho_{\kappa} (AB/2, \rho_{\kappa})$, на экране появляется кривая.

- Составление стартовой модели геоэлектрического разреза, то есть задание ρ₁, ρ₂, ρ₃, h₁, h₂ по виду полевой кривой, на основе опыта интерпретатора или предыдущих моделей, с учетом того, что ρ₂ – известно.
- Расчет трехслойной теоретической кривой ρ_к ВЭЗ, на основании созданной модели. Получено 2 кривых – теоретической и полевой (экспериментальной).
- 4. Сравнение ρ^т_κ (теоретической) и ρ^п_κ (полевой) кривой. Исправление геоэлектрической модели на основании сравнения.
- 5. Продолжение цикла (3–4) до совпадения ρ^т_к и ρ^п_к с заданной точностью.
- 6. Последняя модель является искомым геоэлектрическим разрезом.

При ρ_2 – неизвестно:

Интерпретация осуществляется аналогично интерпретации при известном ρ_2 , отличаясь тем, что ρ_2 задается на основании анализа кривой. В результате, полученный геоэлектрический разрез будет одним из многих возможных вариантов реального разреза. Так как в этом случае надежно определяются только лишь ρ_1 , h_1 , S_2 (или T_2 в зависимости от типа кривой), в соответствии с принципом эквивалентности, и ρ_3 .

Компьютерная интерпретация четырехслойных и многослойных кривых ВЭЗ

Интерпретация четырехслойных и многослойных разрезов отличается только увеличением количества параметров и усложнением принципа эквивалентности.

Рассмотрим случай, когда УЭС (ρ_2 , ρ_3 , ..., ρ_{n-1}) промежуточных горизонтов известны:

- 1. Ввод кривой ρ_к (*АВ*/2, ρ_к) на экране, как правило, появляется кривая.
- Составление стартовой модели геоэлектрического разреза, то есть задание ρ₁, ρ₂, ..., ρ_n, h₁, h₂, ..., h_{n-1}, по виду полевой кривой, на основе опыта интерпретатора или предыдущих моделей, с учетом того, что ρ₂, ρ₃, ..., ρ_{n-1} – известны.
- Расчет многослойной теоретической кривой ρ_к ВЭЗ, на основании созданной модели. Получено 2 кривых – теоретической и полевой (экспериментальной).
- 4. Сравнение ρ^т_κ (теоретической) и ρ^п_к (полевой) кривой. Исправление геоэлектрической модели на основании сравнения.
- 5. Продолжение цикла (3–4) до совпадения ρ^т_к и ρ^п_к с заданной точностью.
- 6. Последняя модель является искомым геоэлектрическим разрезом.

При неизвестном удельном электрическом сопротивлении промежуточных горизонтов (ρ_2 , ρ_3 , ..., ρ_{n-1}) возможно достоверно установить лишь продольную проводимость *S* или поперечное сопротивление *T*, а так же пределы изменения ρ_i , h_i соответствующего горизонта.

<u>Задание</u>

- 1. Построить кривые ВЭЗ по данным, приведенным в таблице 3.4.
- 2. Допустив, что ρ_2 и ρ_3 известны, произвести интерпретацию четырехслойных кривых ВЭЗ: определить значения ρ_1 , h_1 , h_2 , h_3 и h_4 .
- 3. Построить геоэлектрические разрезы вдоль линий профиля, на которых производились зондирования, учитывая, что расстояния между точками зондирования составляют 50 м.
- Произвести интерпретацию четырехслойных кривых ВЭЗ, при условии, что ρ₂ и ρ₃ неизвестны).

							Таб	лица 3.4.
				ρκ, Ο)м·м			
АВ/2, м		Профи	ль I–II]	Профил	ь III–IV	τ
	ВЭЗ-1	ВЭЗ-2	ВЭЗ-З	ВЭЗ-4	ВЭЗ-1	ВЭЗ-2	ВЭЗ-З	ВЭЗ-4
3	75	70	70	70	16	45	34	79
4,5	78	71	70	74	12	50	43	86
6	86	73	74	77	9	58	51	100
9	111	83	83	88	5	74	68	133
15	149	113	105	114	3	105	85	200
25	181	156	149	159	3	150	87	280
40	186	194	194	191	3	180	65	320
65	201	204	203	215	4	170	32	300
100	238	187	187	232	6	140	17	250
150	308	183	178	281	7	95	15	150
225	399	203	187	374	7	77	20	110
325	504	263	225	466	7	93	28	110
500	653	360	295	604	5	131	44	150
750	792	450	404	782	4	184	63	210
1000	890	529	476	890	3	221	85	280
1500	1053	641	548	1047				

3.3. Качественная интерпретация кривых ВЭЗ

3.3.1 Интерпретация кривых ВЭЗ методом S

В практике геофизических работ часто встречаются случаи, когда в основании разреза залегают высокоомные образования, удельное электрическое сопротивление которых во много раз превышает удельное электри-

ческое сопротивление перекрывающей толщи, и может быть принято стремящимся к бесконечности. В этом случае правые ветви кривых ВЭЗ, построенных над подобным разрезом, стремятся асимптотически к прямой, идущей под углом 45° к оси абсцисс.

Для разреза такого типа можно определить по кривым ВЭЗ суммарную продольную проводимость надопорной толщи *S* следующим образом:

- правую ветвь кривой ВЭЗ, идущую под углом 45°, продолжают до пересечения с осью абсцисс (до уровня, где ρ_к=1);
- на оси абсцисс (ρ_к=1) в точке, где происходит пересечение с линией, продолжающей под углом 45° правую асимптотическую ветвь кривой ВЭЗ, находим значение, соответствующее величине S надопорного горизонта.

<u>Задание 1</u>

- Построить по данным таблиц 3.6 а–д, кривые ВЭЗ. Определить значение суммарной продольной проводимости надопорной толщи S для всех точек ВЭЗ вдоль профилей I V. Расстояние между точками ВЭЗ 100 м, между профилями 100 м.
- Зная по данным бурения мощности надопорной толщи в точках ВЭЗ №1 (*H*=275 м), №9 (*H*=300 м) №17 (*H*=320 м), определить среднее продольное удельное сопротивлений р₁ на участке исследования.
- 3. Рассчитать мощность надопорной толщи *H* для точек ВЭЗ, исходя из формулы:

$$S = \frac{H}{\rho_l}$$

Построить карту изогипс опорной толщи в масштабе 1:5 000 для участка исследования.

<u>Задание 2</u>

- 1. Построить кривые ВЭЗ вдоль разведочной линии *AB* по данным в таблице 3.7. Определить значение суммарной продольной проводимости надопорной толщи для всех точек ВЭЗ.
- Зная по данным каротажа удельное электрическое сопротивление надопорной толщи для точки зондирования ВЭЗ № (ρ_{cp}=100 Ом·м) рассчитать мощность этой толщи в точках ВЭЗ № 1 – 6, принимая ρ_{cp}=ρ_l.
- 3. Построить геоэлектрический разрез вдоль линии АВ.

Таблица 3.6-а

A D/2 M			р _к , Ом∙м	[
AD/2, M	ВЭЗ-1	ВЭЗ-2	ВЭЗ-З	ВЭЗ-4	ВЭЗ-5
3	75	24	43	37	44
4,5	76	18	46	38	47
6	80	17	43	33	44
9	98	18	38	23	39
15	100	17	33	15	35
25	137	19	33	14	35
40	208	25	36	16	33
65	330	37	40	20	40
100	487	52	50	29	50
150	715	80	73	42	73
225	1035		103	63	103
325			157	95	157
500			258	136	258

Данные ВЭЗ по профилю I.

Таблица 3.6-б

	Данн		ιο προφι	ллю п	
AD/2 M			ρ _κ , Ом·м	M	
AD/2, M	ВЭЗ-6	ВЭЗ-7	ВЭЗ-8	ВЭЗ-9	ВЭЗ-10
3	30	31	31	60	22
4,5	27	23	31	59	22
6	22	20	34	47	20
9	17	16	36	35	16
15	17	16	38	30	14
25	17	18	41	30	15
40	22	27	42	42	21
65	33	40	49	49	32
100	50	62	67	58	49
150	73	90	94	79	71
225	113	143	135	104	112
325			202	149	157
500			329	223	256

Данные ВЭЗ по профилю II

Таблица 3.6-в

			$\rho_{\kappa}, \mathbf{O}\mathbf{M} \cdot \mathbf{M}$		
АВ/2, м	ВЭЗ-11	ВЭЗ-12	ВЭЗ-13	ВЭЗ-14	ВЭЗ-15
3	27	26	56	55	54
4,5	17	17	37	36	36
6	14	14	31	31	30
9	15	15	28	34	33
15	13	13	28	31	31
25	15	15	29	29	29
40	23	23	37	37	37
65	38	37	47	47	48
100	60	55	65	65	65
150	90	81	97	97	97
225	133	122	147	147	148
325			217	217	230
500				349	

Данные ВЭЗ по профилю III

Таблица 3.6-г

$\Delta D/2 M$			ρ _к , Ом⋅м		
AD/2, M	ВЭЗ-16	ВЭЗ-17	ВЭЗ-18	ВЭЗ-19	ВЭЗ-20
3	21	25	38	38	29
4,5	20	23	37	37	30
6	17	19	35	35	29
9	15	18	30	30	23
15	15	18	25	25	22
25	18	20	24	24	24
40	20	22	28	28	23
65	32	34	39	39	28
100	46	51	53	53	40
150	71	74	78	78	64
225	102	108	114	114	98
325	0	158	167	167	139
500				265	201

Данные ВЭЗ по профилю IV

Таблица 3.6-д

	Диш		io npoqui		
AD/2 M			ρ _к , Ом⋅м		
AD/2, M	ВЭЗ-21	ВЭЗ-22	ВЭЗ-23	ВЭЗ-24	ВЭЗ-25
3	32	28	30	30	50
4,5	32	28	30	30	48
6	23	21	25	25	48
9	19	17	22	22	40
15	17	15	22	22	37
25	17	15	20	20	43
40	25	22	26	26	38
65	36	32	41	41	42
100	51	45	64	64	55
150	77	68	96	96	75
225	117	104	148	148	119
325	0	144	208	208	167
500	0	239	305	305	236

Данные ВЭЗ по профилю V

Таблица 3.7

 ρ_{κ} , Ом·м АВ/2, м ВЭЗ-1 ВЭЗ-2 ВЭЗ-З ВЭЗ-4 ВЭЗ-5 ВЭЗ-6 4,5

Данные ВЭЗ вдоль линии А-В

3.7.2 Построение разрезов ρ_{κ}

Одним из способов качественной интерпретации кривых ВЭЗ является построение разрезов кажущихся сопротивлений для профилей, вдоль которых проводились электрические зондирования.

Для построения такого разреза по данным ВЭЗ следует в выбранном масштабе (линейном) отметить вдоль горизонтальной линии точки зондирования, а вдоль вертикальной оси – значения *АВ*/2 в метрах, вертикальный масштаб обычно выбирается логарифмическим, иногда – линейным.

Для каждой точки зонирования против ординаты, соответствующей определенному разносу AB/2, следует нанести значения ρ_{κ} , а затем провести изолинии. По сгущению и разряжению изолиний можно выяснить положение хорошо проводящих объектов и высокоомных пород, таким образом, качественно охарактеризовать геоэлектрический разрез.

Рис. 3.5. Пример построения разреза кажущихся сопротивлений.

<u>Задание</u>

Построить кривые ВЭЗ и разрез кажущихся сопротивлений для линии А-В, вдоль которой проводились вертикальные электрические зондирования в точках 1-8, отстоящих друг от друга на расстоянии 150 м (таблица 3.8). Пример оформления разреза на рис. 3.5.

\mathbf{I} uoninga \mathbf{J} .0

AB/2 ,		ρ _κ , Ом·м										
М	ВЭЗ-1	ВЭЗ-2	ВЭЗ-З	ВЭЗ-4	ВЭЗ-5	ВЭЗ-6	ВЭЗ-7	ВЭЗ-8				
3	66	67	61	69	59	66	67	58				
4,5	66	67	63	69	59	66	67	58				
6	66	67	64	70	60	67	68	59				
9	67	68	66	70	61	67	68	60				
15	76	70	70	79	60	69	71	63				
25	86	79	78	90	65	77	81	70				
40	114	96	101	109	80	99	105	93				
65	161	139	141	144	109	130	146	130				
100	216	194	199	184	120	154	202	185				
150	290	247	257	188	109	155	256	236				
225	357	322	333	154	76	120	319	311				
325	415	394	387	102	40	69	392	377				
500	453	420	430	51	14	25	471	444				

4. Метод естественного электрического поля

Сущность метода естественного поля заключается в изучении электрических полей, созданных естественными электродвижущими силами химического, фильтрационного и диффузионного происхождения с целью изучения геологических объектов, связанных с этими полями.

Изучение электрического поля производится посредством измерения разности потенциалов между различными точками дневной поверхности.

Наибольшее применение метод получил при поисках и разведке сульфидных месторождений, на которых возникновение естественного поля связано с окислительно-восстановительными процессами, и при инженерно-гидрогеологических исследованиях. В последнем случае объектом исследования являются фильтрационные электрические поля.

Измерительная установка для работы по методу естественного поля состоит из двух измерительных неполяризующихся электродов, измерительного прибора и соединительных проводов.

Неполяризующиеся электроды представляют собой пористые фаянсовые сосуды, в которые вставлены медные стержни, верхняя часть которых закрыта изолирующим материалом. Сосуд заполняется насыщенным раствором медного купороса, который медленно фильтруется через стенки сосуда в землю. Таким образом, контакт медного штыря с землей производится через раствор медного купороса.

Рис. 4.1. Устройство неполяризующегося электрода

В неполяризующихся электродах электродвижущая сила, называемая поляризацией электродов, оказывается небольшой по величине и практически постоянной по времени, что позволяет исключить ее в процессе измерений естественного поля.

При работе методом естественного поля нет необходимости в компенсаторе поляризации и в питающей цепи.

4.1. Обработка результатов наблюдений в методе естественного поля (съемка градиентов)

Обработка контура. Обработку данных начинают с нахождения невязки наблюдений по опорному контуру. Для этого подсчитывают суммы разностей потенциалов и вычисляют невязку по формуле $m = \sum (\Delta U)$. Результаты подсчетов записывают в конце журнала наблюдений. О качестве полевых измерений судят по величине погрешности *p*, выраженной в про-

центах: $p = \frac{|m| \cdot 100}{\sum |\Delta U|}$, (где |m| – абсолютная величина невязки; $\sum |\Delta U|$ –

сумма абсолютных значений измеренных по опорному контуру разностей потенциалов). Значение *р* записывают в полевой журнал.

Невязку разбрасывают равными долями с обратным знаком по отношению к знаку невязки по всем измеренным разностям потенциалов ΔU . Поправку за невязку вычисляют с округлением до первого десятичного знака по формуле $\varepsilon = -m/n$, (где *m* – невязка; *n* – число замеров в контуре).

Затем вычисляют и заносят в журнал исправленные значения разностей потенциалов $\Delta U'$ определяемые по формуле $\Delta U' = \Delta U + \varepsilon$. После этого производят повторный (контрольный) расчет невязки

$$m_1 = \sum (+\Delta U') + \sum (-\Delta U')$$

Полученная невязка должна быть равна 0, (может быть ~ 0,1-0,4 мВ из-за погрешности, вносимой округлением, в этом случае она относится к одному или двум максимальным значениям).

После этого находят потенциалы всех точек контура относительно начальной точки (ПКО, ПРО), потенциал которой условно выбирают рав-

ным 0. Потенциал каждой последующей точки равен потенциалу предыдущей, суммированному с исправленной разностью потенциалов между этими точками. Значение потенциалов заносят в предпоследнюю графу журнала.

Обработка наблюдений по профилям. Обработку наблюдений по профилям (ходам), опирающимся начальной и конечной точками на контур с известными значениями потенциала, проводят по той же схеме. Лишь невязку вычисляют по другой формуле: $m_1 = \sum (\Delta U) + (U_H - U_K)$ здесь U_H и U_K – потенциалы начальной и конечной точек хода, являющихся точками контура, к которым привязаны наблюдения по данному профилю. Расчет проводится для каждого профиля, с получением своей погрешности и невязки.

Невязку разбрасывают по измеренным значениям разностей потенциалов обрабатываемого хода и затем вычисляют потенциалы его точек относительно потенциала начальной точки.

Таблица 4.1

ПР	ПК	$\Delta U_{{}_{\it H3M}}$	δ	$\Delta U_{ m ucnp}$	U

Форма журнала для обработки результатов метода ЕП

Изображение результатов наблюдений. Результаты съемки естественных полей изображают в виде карт эквипотенциальных линий, графиков потенциала и карт графиков потенциала.

Для построения карт эквипотенциальных линий естественного поля на план наносят точки наблюдения, записывают около них значения потенциалов и в полученном поле чисел проводят эквипотенциальные линии. Сечение эквипотенциальных линий зависит от интенсивности наблюденного поля. Желательно, чтобы изолинии наиболее четко отображали особенности распределения потенциалов на участке съемки.

Через эпицентр аномалии в крест простирания строится интерпретационный профиль, по которому строится график потенциала.

Для построения графика потенциалов на ось абсцисс наносят точки наблюдений, а по оси ординат откладывают значения потенциала в соответствующих точках. Горизонтальный масштаб должен соответствовать масштабу отчетной карты, а вертикальный – обеспечивать возможность четкого анализа графика. График строят в виде ломаной линии. Под графиком вычерчивают рельеф земной поверхности и изображают результаты последующей интерпретации.

Задание:

1. По описанию в п. 4.1. провести обработку контура (табл. 4.2.) и профилей (табл. 4.3.) 2. Представить результаты наблюдений у казанном виде. Шаг по профилю 25, расстояние между профилями.

Таблица 4.2.

ПРО	ΔU _{EΠ} , mB	ПК15	ΔU _{EΠ} , mB	ПР15	ΔU _{EΠ} , mB	ПК0	ΔU _{EΠ} , mB
ПКО		ПРО		ПК15		ПР15	
ПК1	0,7	ПР1	2,8	ПК14	0,9	ПР14	0,8
ПК2	1,4	ПР2	2,4	ПК13	0,9	ПР13	1,7
пкз	1,8	ПРЗ	2,4	пк12	0,8	ПР12	0,0
	2,2		3,1		0,7		1,0
11K4	2,6	IIP4	0,0		0,6	IIPII	1,0
ПК5	2,8	ПР5	0,6	ПК10	0,4	ПР10	1,8
ПК6	26	ПР6	0.0	ПК9	0.2	ПР9	0.0
ПК7	2,0	ПР7	0,0	ПК8	0,2	ПР8	0,0
ПК8	1,8	ПР8	-3,1	ПК7	0,0	ПР7	0,7
ПК9	0,5	ПР9	-2,4	ПК6	-0,2	ПР6	0,5
ПК10	-1,1	ПР10	-2,4	ПК5	-0,3	ПР5	0,3
	-2,4		-1,7		-0,3		0,0
	-3,2		-1,9		-0,3		-0,2
11K12	-3,4	IIP12	-1,6	11K3	-0,3	TIP3	-0,3
ПК13	-3,2	ПР13	-1,3	ПК2	-0,2	ПР2	0,1
ПК14	_2.8	ПР14	-0.5	ПК1	-4.6	ПР1	0.1
ПК15	2,0	ПР15	0,5	ПК0	т,0	ПРО	0,1

Значения разности потенциалов по контуру ΔU

Таблица 4.3.а.

пко	ПР1	ПР2	ПР3	ПР4	ПР5	ПР6	ПР7
	-1,3	-2,5	-3,1	-3,6	-4,1	-4,3	-4,5
	-1,8	-2,4	-2,9	-3,4	-3,6	-3,6	-3,4
ПК2	-2,5	-3,4	-4,3	-5,1	-5,5	-5,5	-5,1
ПК3	-3,3	-4,6	-6,1	-7,6	-8,5	-8,5	-7,6
ПК4	-4.1	-6.1	-8.6	-11.1	-12.8	-12.8	-11.1
ПК5	7	_7.5	_11.3	_15.5	_18 5	_18 5	-15.5
ПК6	-4,7	-7,5	-11,5	-13,3	-10,5	-10,5	-13,5
ПК7	-4,6	-7,9	-13,0	-19,1	-23,7	-23,7	-19,1
ПК8	-3,5	-6,4	-11,2	-17,6	-22,8	-22,8	-17,6
пио	-1,1	-2,3	-4,4	-7,4	-9,9	-9,9	-7,4
	1,1	2,9	5,0	7,9	10,4	10,4	7,9
11K10	4,6	6,9	11,8	18,2	23,4	23,4	18,2
ПК11	5,2	8,5	13,5	19,6	24,2	24,2	19,6
ПК12	5,2	8,0	11,9	16,1	19,0	19,0	16,1
ПК13	4.6	67	92	11 7	13.3	13.3	11 7
ПК14	т,0 2,0	5,7	,2	7.0	13,5	13,5	7.0
ПК15	3,8	5,2	6,7	7,0	9,0	9,0	7,0

Значения разности потенциалов по планшету ΔU , мВ

Таблица 4.3.б.

пко	ПР8	ПР9	ПР10	ПР11	ПР12	ПР13	ПР14
	-4,5	-3,6	-4,4	-4,3	-4,3	-3,5	-4,5
	-2,9	-2,4	-1,8	-1,4	-1,0	-0,7	-0,4
ПК2	-4,3	-3,4	-2,5	-1,8	-1,2	-0,8	-0,5
ПК3	-6,1	-4,6	-3,3	-2,2	-1,5	-0,9	-0,6
ПК4	-8.6	-6.1	-4.1	-2.6	-1.6	-1.0	-0.6
ПК5	-11 3	-7.5	-4 7	-2.8	-1 7	-1.0	-0.5
ПК6	12.0	7,0		2,0	1,7	0.0	0,5
ПК7	-13,0	-7,9	-4,0	-2,0	-1,5	-0,8	-0,4
ПК8	-11,2	-6,4	-3,5	-1,8	-0,9	-0,4	-0,2
пк9	-4,4	-2,3	-1,1	-0,5	-0,2	0,0	0,1
ПИ10	5,0	2,9	1,7	1,1	0,7	0,5	0,4
	11,8	6,9	4,0	2,4	1,5	1,0	0,7
	13,5	8,5	5,2	3,2	2,0	1,3	0,9
ПК12	11,9	8,0	5,2	3,4	2,2	1,5	1,1
ПК13	9.2	6.7	4.6	3.2	2.2	1.5	1.8
ПК14	67	5.2	3.8	2.8	2.0	1 5	0.4
ПК15	0,7	5,2	5,0	2,0	2,0	1,0	0,4

4.2. Интерпретация результатов полевых наблюдений в методе естественного поля

Интерпретация результатов полевых наблюдений в методе естественного поля сводится в основном к качественным оценкам местоположения и формы объекта и некоторым количественным расчетам, целью которых, как правило, является определение глубины залегания вызвавшего аномалию объекта.

Порядок работы при этом следующий:

- 1. На картах эквипотенциальных линий и картах графиков потенциала ЕП выделяются аномальные участки.
- 2. По расположению и форме изолиний потенциала ЕП и графиков потенциала устанавливается местоположение объекта, вызвавшего аномалию, и производится суждение о форме тела.
- 3. Определяются глубина залегания объекта одним из известных способов: для сферической залежи глубину залегания до центра можно определить следующими способами:
 - а) по длине хорды q, соединяющей те точки графика потенциала естественного поля ($U_{\rm E\Pi}$), где величина $U_{\rm E\Pi}$ достигает половины от максимального значения,

$$h = 0.65q$$
;

б) по значению параметра *m* (рис. 4.1.),

Рис 4.1. Нахождение параметров q и m по графикам $U_{\rm EII}$

где m – отрезок в метрах, отсекаемый на линии профиля касательной, проведенной через точку перегиба на графике $U_{\rm E\Pi}$ и перпендикуляром, восстановленным на линию профиля из точки пересечения той же касательной и линии, параллельной профилю, проведенной через точку максимума $U_{\rm E\Pi}$;

в) по скорости убывания потенциала на графике U_{ЕП}. Для этого следует определить величины X₁, X₂, X₃, X₄ – расстояния от нулевой точки, соответствующей положению максимума U_{ЕП} точек, где величина U_{ЕП}, достигает соответственно 0,715, 0,355, 0,172, 0,084 от максимального значения:

$$X_1 = 0,5h; X_2 = h; X_3 = 1,5h; X_4 = 2h;$$

г) Пользуясь формулой $U_{E\Pi} = E_0 a^2 \left(\frac{\rho_e}{\rho_e + 2\rho_i} \right) \frac{\cos \theta}{r^2}$ оценить

возможный размер а и уточнить глубину залегания h шара при $E_0 = 30 \, \text{мB}$ и $\rho_e / \rho_i = 25$

Рис. 4.2. Естественное поле шара

Контрольные вопросы:

- 1. Какие электроды используют в методе ЕП?
- 2. Каким параметрам должна удовлетворять пара измерительных электродов при работе методом естественного поля?
- 3. Как будут соотноситься между собой графики потенциала естественно поляризованного тела при наблюдениях на земной поверхности над рудным телом и в штольне проходящей под рудным телом?
- 4. Почему в неполяризующихся электродах используют пресыщенный раствор медного купороса?

5. Интерпретация результатов полевых наблюдений в методе заряженного тела (МЗТ)

Метод заряженного тела (M3T) основан на изучении потенциала или градиента потенциала постоянного (или низкочастотного) поля, создаваемого точечным источником, заземленным в скважине или горной выработке. Метод применяется для прослеживания и оконтуривания ранее выявленных хорошо проводящих рудных объектов, а также для решения гидрогеологических задач.

5.1. Интерпретация МЗТ на рудных объектах

Интерпретация результатов полевых наблюдений производится, как правило, в два этапа:

На первом этапе производится качественная интерпретация, заключающаяся в определении местоположения и контуров рудного тела. При этом:

1) внимательно исследуется план изолиний и выделяется аномальная часть поля. За нормальное поле принимается поле точечного источника в данных геоэлектрических условиях, т.е. планы изолиний, полученные при заряде в нерудные скважины;

2) определяются местоположение и контуры тела по форме изолиний, сгущению их вблизи контакта с окружающей средой или максимумам градиента потенциала, наблюдаемым над краями тел, ширина которых превышает глубину залегания верхней кромки;

3) отмечается проекция проводника на дневную поверхность по протяженности (большой оси) изолиний, максимумам потенциала или нулевым значением градиента потенциала на поперечных профилях;

4) по симметрии или асимметрии графиков градиентов потенциала производится суждение о крутом или пологом падении тел. (Падение пластов направлено в сторону меньших по величине и более плавных экстремумов на графиках потенциала).

На втором этапе оценивается глубина залегания рудной залежи *h*. Глубина залегания верхней кромки определяется по формулам, полученным для идеализированных условий и в реальных условиях оказывается приближенной. Наиболее распространены способы определения глубины залегания по параметру *m* или по положению экстремумов градиента потенциала.

1. Определение глубины залегания *h* по расстоянию между экстремумами градиента потенциала. Положение экстремумов градиента потенциала можно определить из формул для напряженности электрического поля $E = -\frac{\partial U}{\partial r}$ при условии $\frac{\partial E}{\partial r} = 0$. Для сферического проводника в этом случае справедливо выражение: *h*=0,7L, где L - расстояния между экстремумами на графике градиента потенциала (рис.5.1).

Рис. 5.1. К определению глубины залегания *h* по графикам градиента потенциала в методе заряженного тела

Для линейного однородно заряженного проводника формула приобретает вид h=0,5L. Для пластообразных тел; $h=(0,4\div0,9)L$, где коэффициент 0,4 принимается в случав мощного пласта, а коэффициент 0,9 – для тонких пластов.

2. Определение глубины залегания h по параметру m.

Под параметром m понимается расстояние в метрах, которое откладывается на линии профиля, если на графике градиента потенциала провести касательную в точке перегиба (AB), затем из точки максимума (или из точки минимума) провести линию параллельную оси абсцисс (линия профиля), (CD), а из точки их пересечения Q (см. Рис.1) опустить на линию профиля перпендикуляр. Расстояние m получается как катет треугольника OQP, лежащий на линии профиля.

Для сферических тел справедливо соотношение h=2,6m, для линейных однородно заряженных проводников h=2m. Для пластообразных тел глубина залегания .определяется по формуле:

 $h=\alpha m$,

где 0,9< α <1.3; α =0,9 –принимается для мощных пластов α =1.3 – для тонких пластов.

Задание

- 1. Ознакомиться со способами качественной интерпретации данных полевых наблюдений в методе заряженного тела и о приемами определения глубины залегания .верхней кромки тела.
- 2. Произвести суждение о предполагаемой форме тела, на основании графиков, предлагаемых для интерпретации. Определить глубину залегания выявленного объекта используя вышеприведенные формулы.

5.2. МЗТ на гидрогеологических объектах

Гидрогеологический вариант метода предназначен для определения направления и скорости движения подземных вод при наличии одной скважины. Данные полевых наблюдений в этом случае представляются в виде плана изолиний потенциала, полученного в результате измерений вдоль лучевых профилей над скважиной, в которую до водоносного горизонта опущен один из питающих электродов с электролитом. Пример плана изолиний показан на рис. 6.2.

Рис. 5.2. План изолиний потенциала над засоленной скважиной Определение направления движения подземного потока и его скорости производится следующим образом:

I. Определяется по плану изолиний направление (азимут) максимального смещения изолиний. Для этого можно построить график по оси абсцисс которого откладывается азимут в градусах, а по оси ординат – приращение радиусов изолиний в метрах. (ΔR) по отношению к исходной изолинии, наблюденной непосредственно после засоления скважины и представляющей собой, как правило, фигуру, близкую к окружности. Число кривых (ΔR) соответствует числу наблюденных изолиний. Примером таких графиков служит рис. 5.3. Азимут направления движения подземного потока определяется как средняя абсцисса для максимумов кривых (ΔR).

2. Определяется скорость движения подземного потока. Для этого вычисляется отношение $V = \Delta R_{\text{max}} / \Delta t$, где ΔR_{max} – максимальное смещение изолинии по направлению потока, а Δt – время, за которое это смещение произошло. Среднее значение V можно получить, построив график зависимостей ΔR_{max} от времени t. При малых временах ΔR_{max} меняется в зависимости от времени не линейно, возрастая с увеличением t, что объясняется постепенностью растворения соли в воде. При больших временах график зависимости ΔR от времени выходит на линейную асимптоту, соответствующую скорости переноса засоленной области потоком подземных вод. Эту часть графика и используют для расчета скорости по формуле $V = \Delta R / \Delta t$ (см. рис. 4).

Рис. 5.4. Определение скорости движения подземного потока по смещению изолиний потенциала над засоленной скважиной

Задание

Провести интерпретацию результатов полевых наблюдений методом заряженного тела над засоленной скважиной, определив, в соответствии с вышеизложенными правилами, направление и скорость движения подземного потока.

6. Метод вызванной поляризации

В процессе интерпретации результатов полевых работ методом ВП желательно оценить форму, размеры, положение в пространстве и вещественный состав геологических объектов, явившихся причиной существования аномалии кажущейся поляризуемости. Некоторые приемы подобной интерпретации рассматриваются в настоящем задании.

6.1. Поверхностная и объемная поляризация тел, имеющих изометричную форму

Потенциал поля ВП от электронно-проводящей сферы, помещенной в однородное электрическое поле E_0 , в случае поверхностной поляризации тела может быть представлен в виде:

$$U_{\rm BII} = \frac{3\rho_1^2 \lambda a^2}{(\rho_1 + 2\rho_2)(\rho_1 + 2\rho_2 + 2\rho_2 \frac{\lambda}{a})} E_0 \frac{\cos\Theta}{r^2}$$
(6.1)

где λ – коэффициент поверхностной поляризации сферы; ρ_1 – проводимость вмещающей среды; ρ_2 – проводимость сферического тела; *a* – радиус сферы, Θ и *r* – координаты сферической системы.

Для сплошных рудных тел, поляризующихся в основном поверхностно, можно принять $\sigma_2 > \sigma_1$. В этом случае формула (6.1) упрощается:

$$U_{\rm BII} = \frac{3\lambda}{(1+2\frac{\lambda}{a})} a^2 E_0 \frac{\cos\Theta}{r^2}$$
(6.2)

Потенциал поля ВП объемно поляризованного шара в поле точечного источника при достаточном удалении от него характеризуется выражением:

$$U_{\rm BII} = \frac{\eta^*}{3 - \eta^*} a^3 E_0 \frac{\cos \Theta}{r^2}$$
(6.3)

где η^* – кажущаяся поляризуемость.

Из формул (6.2) и (6.3) видно, что как в случае поверхностной, так и в случае объемной поляризации, форма графиков распределения $U_{\rm BII}$ одинакова, но интенсивность аномалий и их связь с размерами тела различны.

В случае поверхностной поляризации аномальное поле $U_{\rm BII}$ прямо пропорционально коэффициенту поверхностной поляризации λ и поверхности тела. В случае объемной поляризации тела аномальное поле $U_{\rm BII}$ пропорционально поляризуемости тела η^* и его объему.

Для тел одинакового радиуса a, расположенных в поле одного и того же источника на одной и той же глубине r, отношение аномалий $U_{\rm BII}$ над сплошным рудным телом к вкрапленным составляет

$$N = \frac{\left(3\frac{\lambda}{a}\right)}{\left(1+2\frac{\lambda}{a}\right)} \cdot \frac{3-\eta^{*}}{\eta^{*}}$$
(6.4)

Если N>1, то аномалия от сплошного рудного тела больше, чем аномалия от вкрапленного, если N<1, то наоборот, вкрапленное рудное тело создает больший аномальный эффект, чем сплошное. Анализируя выражение (6.4) для различных значений λ и η^* , можно оценить, для каких размеров изометрических рудных тел поиски сплошных проводящих объектов (сульфидных тел с помощью метода ВП) более эффективны, чем поиски вкрапленных объектов методом ВП в данном районе становятся более эффективными, чем поиски сплошных тел.

<u>Задание</u>

1. Построить график зависимости *N* от *a* для значений a) $\lambda = 85$ см; $\eta^* = 23\%$; б) $\lambda = 94$ см; $\eta^* = 11\%$; в) $\lambda = 20$ см; $\eta^* = 12\%$; pacчеты провести для *a*=100; 150; 225, 325, 500, 750, 1000,1500....10 000 см.

2. Проанализировать полученные графики.

6.2 Расчет кажущейся поляризуемости

В конце 50-х годов XX века был разработан и применен способ расчета полей вызванной поляризации для случаев объемно поляризованных тел, в котором использовались ранее известные решения задач о проводящих телах и средах в поле постоянного тока. Согласно предложенному способу можно для определения полей ВП использовать формулы и результаты решения прямых задач электроразведки для неполяризующихся сред, заменив удельное электрическое сопротивление ρ фиктивной величиной $\rho^* = \rho / (1-\eta)$, где ρ – поляризуемость среды.

В соответствии с этим при решении прямых задач метода вызванной поляризации используется приближенное соотношение:

$$\eta_{\kappa} = \frac{1}{\rho_{\kappa}} \sum_{i=1}^{m} \eta_{i} \rho_{i} \frac{\partial \rho_{\kappa}}{\partial \rho_{i}},$$

позволяющее определить η_{κ} сложного разреза, если известно выражение для ρ_{κ} этого разреза и заданы значения поляризуемостей и удельных сопротивлений отдельных пластов, слагающих разрез.

В случае двух сред (*m*=2), различающихся по поляризуемости, но не различающихся по электропроводности, формула упрощается:

$$\eta_{\kappa} = \eta_1 + (1 - \eta_1) \frac{\frac{\rho_{\kappa}}{\rho_1} - 1}{\frac{\rho_{\kappa}}{\rho_1}},$$

где ρ_к – кажущееся удельное сопротивление; ρ₁ и η₁ – удельное электрическое сопротивление и поляризуемость первой среды.

На основании этой формулы можно рассчитать значения кажущейся поляризуемости для горизонтально-слоистого разреза, представленного горизонтальным пластом, подстилаемым полубесконечной однородной средой (т.е. двухслойные кривые ВЭЗ-ВП).

Это соотношение является формальным и не отражает связи между ρ_{κ} и η_{κ} , наблюдаемыми при работах методом ВП, поскольку природа аномалий ρ_{κ} и η_{κ} различна. Однако оно дает возможность сопоставить аномалии в средах, характеризующихся одинаковой электропроводностью, но разных по поляризуемости, со средами неполяризующимися, различными по своим удельным электрическим сопротивлениям, и перенести на поляризующиеся среды приемы, разработанные в теории электроразведки для неполяризующихся сред.

<u>Задание</u>

Рассчитать теоретические графики кажущейся поляризуемости для профилирования градиент-установкой над вертикальным контактом двух сред, используя в качестве исходных теоретические графики ρ_{κ} и формулу пересчета

$$\frac{\eta_{\kappa} - \eta_{1}}{\eta_{2} - \eta_{1}} = \frac{\rho_{\kappa}}{\rho_{1}} \left(1 - k_{12}^{2}\right) \left[\frac{\rho_{\kappa}}{\rho_{1}} - 1\right] k_{12} = \frac{1}{2}$$
или
$$\eta_{\kappa} = \eta_{1} + \left(\eta_{2} - \eta_{1}\right) \frac{\rho_{1}}{\rho_{\kappa}} \left(1 - k_{12}^{2}\right) \left[\frac{\rho_{\kappa}}{\rho_{1}} - 1\right] k_{12} = \frac{1}{2}$$

для значений: ρ_1 = 900 Ом·м; ρ_2 =300 Ом·м, η_1 =1% и η_2 =11%.

Примечание. Для вычислений η_{κ} достаточно знать значение $\frac{\rho_{\kappa}}{\rho_{1}}$ соответствующее заданному коэффициенту отражения и $\frac{\rho_{\kappa}}{\rho_{1}}$, соответствующее $k_{12} = \frac{1}{2}$, чтобы вычислить $\left[\frac{\rho_{\kappa}}{\rho_{1}} - 1\right]k_{12} = \frac{1}{2}$.

6.3. Способы интерпретации результатов полевых наблюдений методом ВП

В процессе интерпретации результатов полевых работ методом ВП желательно оценить форму, размеры, положение в пространстве и вещественный состав геологических объектов, явившихся причиной существования аномалии кажущейся поляризуемости.

1. Определение формы тела. Предположение о форме поляризуемого тела можно высказать на основании анализа формы графиков распределения η_{κ} и ρ_{κ} и протяженности аномалии в плане. При анализе сравниваются теоретические графики η_{κ} и ρ_{κ} над телами правильной геометрической формы с полевыми графиками и определяется протяженность вызвавшего аномалию объекта по карте графиков. После сравнения высказывается предположение о форме тела (изометрической, эллипсовидной, пластовидной и т.д.).

2. Определение глубины залегания локального объекта. Для приближенной оценки глубины залегания верхней кромки локально объектов рекомендуется использовать графики ВЭЗ-ВП, выполненных в центральных частях аномальных зон. Глубина залегания верхней кромки поляризующегося объекта h приблизительно равна полуразносу AB/2, при котором на графике зондирования располагается точка перегиба (рис.6.1-а.).

Для оценки глубины залегания локального объекта рекомендуется выполнить профилирование в поле неподвижного питающего электрода, расположенного непосредственно над поляризующимся телом. На графиках η_{κ} , которые в этом случае по смыслу близки к графикам ВЭЗ-ВП, глубина до верхней кромки тела приближенно равна расстоянию от питающего электрода до точки перегиба (рис.6.1-а.)

3. Определение горизонтальной протяженности локальных объектов. Для оценки горизонтальной протяженности локальных объектов целесообразно использовать графики η_{κ} вдоль профилей, пересекающих центр или ось аномальной зоны. В том случае, когда ширина тела превышает глубину его залегания и протяженность тела на глубину невелика, ширина тела приблизительно равна ширине аномальной зоны (рис.6.2-а.).

При больших глубинах залегания верхней кромки и значительной протяженности тела на глубину, горизонтальные размеры залежи определяются по расстоянию между точками перегиба на графиках η_{κ} (рис.6.2-б.).

4. Определение направления падения. Графики η_{κ} , полученные в поле питающего электрода, расположенного над телом, асимметричны. Более крутой подъем графика и большие максимальные значения η_{κ} наблюдаются со стороны лежачего бока залежи, а менее крутая ветвь с меньшими значениями в максимуме со стороны висячего бока (рис.6.1-б).

5. Оценка протяженности тела на глубину. При профилировании в поле двух неподвижных электродов AB, расположенных приблизительно симметрично поляризующемуся объекту, наличие минимумов по обе стороны от максимума, приуроченного к голове объекта, является признаком малой протяженности тела на глубину (рис.6.1-а.).

6. Определение поляризуемости тела и оценка содержания электронопроводящих минералов. Избыточная поляризуемость (разность между поляризуемостью локального объекта и вмещающей среды) может быть определена из следующего соотношения:

$$\eta_{uso} = \eta_{ahom} \left(\frac{h}{a}\right)^n$$

Здесь η_{κ} – максимальное значение кажущейся поляризуемости над локальным объектом, h – глубина до центра тела, a – радиус для изомерной залежи или полумощность для пластовой залежи, n – коэффициент, зависящий от формы тела, 0 < n < 3.

Для протяженной на большую глубину пластовой залежи, не отличающейся по сопротивлению от вмещающих пород, для оценки η_{изб} можно пользоваться следующим соотношением:

$$\eta_{uso} = \eta_{ahom} \frac{\pi}{\alpha}$$

где, α – угол, под которым видна верхняя кромка пласта из эпицентра аномалии, полученной в поле электродов *AB* (рис. 6.3).

Рис.6.3. Пластовая залежь, протяженная на большую глубину

Объемная концентрация электронно-проводящих минералов в поляризованном теле может быть определена из следующего соотношения:

$$\xi \approx \frac{\eta_{u_{3\delta}}}{\beta (1 - \eta_{u_{3\delta}})}$$

здесь *β* – коэффициент, зависящий от размера, формы и состава включений и режима измерений.

Задание:

Выполнить оценочную интерпретацию результатов работ методом ВП по профилю, ориентированному вкрест простирания пластовой залежи вкрапленных руд (рис.6.4.). В процессе интерпретации оценить:

- 1. видимую мощность пласта,
- 2. глубину залегания верхней кромки,
- 3. направление падения,
- 4. протяженность залежи на глубину,
- 5. поляризуемость и процентное содержание электропроводящих минералов (β = 2,6).

Результаты должны быть представлены как:

- Графики η_к по профилю со всеми построениями, необходимыми при интерпретации.
- 2. Расчет содержания вкрапленности.
- 3. Краткое заключение о форме и размерах источника аномалии и глубине его верхней кромки.

Рис. 6.4. Результаты работ методом ВП.

Контрольные вопросы:

- 1. Какие породы и руды могут создавать аномалии ВП?
- 2. Какие электроды используют в варианте "классического" ВП
- 3. Укажите информативные параметры при работе методом "классического" ВП
- 4. Как проявляется вызванная поляризация при работе методами сопротивлений на низкой частоте?
- 5. Как будут сказываться на глубинности исследований методом ВП проводящие наносы?

7. Метод переходных процессов

7.1. Горизонтально-слоистая среда

Количественная интерпретация данных зондирования в рамках горизонтально-слоистой модели среды осуществляется с помощью палеток двухслойных теоретических кривых. Наряду с этим, широко используются качественные способы интерпретации, основанные на различных дифференциальных трансформациях неустановившегося сигнала. Эти трансформации позволяют преобразовать зависимость сигнала от времени в зависимость кажущейся (эффективной) электропроводности или продольной проводимости от некоторой эффективной глубины исследования. Одним из таких способов получивших широкое распространение, в качестве эффективной глубины исследования используется толщина скинслоя в *t*-области, определяемая через кажущуюся электропроводность:

$$z = k \sqrt{t/(\sigma_t \mu)},$$

где k – коэффициент, близкий к единице (k=0.95), μ = μ_0 = $4\pi \cdot 10^{-7}$ Гн/м.

Для определения σ_t используется зависимость ЭДС, наводимой в совмещенных петлях, от проводимости подстилающего полупространства

$$U = \frac{\mu I Q q}{20} \left(\frac{\sigma \mu}{\pi}\right)^{3/2} t^{-5/2},$$

Неустановившееся поле в ближней зоне не зависит от разноса (или размера установки), а только от эффективных площадей генераторной и приемной петель, входящих в универсальную формулу в виде равноправных сомножителей.

Из формулы для ЭДС нетрудно найти электропроводность полупространства. Если полупространство неоднородное, то по тем же формулам определяется кажущаяся электропроводность.

-2/2

$$\tau_{k} = \left[\frac{111, 4 \cdot l}{\frac{U}{I}t}\right]^{2/3}; \quad \sigma_{\tau} = \frac{800}{l^{2}} \cdot \frac{t}{\tau_{k}} \qquad (U/I \ [MKB/A], t[Mc])$$

Задание:

- 1. По приведенным в таблице 7.1. данным произвести расчет σ_{τ} и τ_k по приведенным формулам.
- 2. Рассчитать глубину проникновения поля для каждого из значений *t*.
- Построить графики зависимости σ_t(τ<u>k</u>) на билогарифмическом бланке)
- 4. При помощи палетки для двухслойных кривых определить σ_2 и S_1 . Для этого кривые $\sigma_t(\tau_k)$, построенные в двойном логарифмическом масштабе, накладываются на палетку теоретических кривых для двухслойного разреза. Палетка представляет собой семейство кривых σ_k/σ_2 , у которых по оси абсцисс отложено значение параметра, а индексом кривой является величина $v = (\sigma_2 l)/S$. Совместив экспериментальную кривую с какой либо палеточной путем сдвига экспериментальной кривой по оси ординат, по индексу палеточной кривой, с которой совпала экспериментальная, найдем значение v. Против единицы на палетке прочитаем на вертикальной шкале-оси экспериментальной кривой величину σ_2 удельную электропроводность подстилающего горизонта. Продольная проводимость покровных отложений S рассчитывается по найденным величинам v и σ_2 .
- 5. Построить разрез по проводимости и разрез $\sigma_{\tau}(z)$.

Таблица 7.1

Шаг по	Шаг по профилю: 200 м									
Сторона петли: 200 м										
	t, мс	1,0	2,0	3,0	4,0	6,0	8,0	10,0		
A	ПК1	16546,0	2406,0	601,0	210,0	52,0	18,0	8,0		
(B/	ПК2	21509,8	3127,8	781,3	273,0	67,6	23,4	10,4		
Mţ	ПК3	18200,6	2646,6	661,1	231,0	57,2	19,8	8,8		
I B	ПК4	9927,6	1443,6	360,6	126,0	31,2	10,8	4,8		
<u>C</u>	ПК5	28128,2	4090,2	1021,7	357,0	88,4	30,6	13,6		
ви	ПК6	23566,0	14428,0	8830,0	5410,0	2024,0	757,0	280,0		
нен	ПК7	23991,7	3488,7	871,5	304,5	75,4	26,1	11,6		
Нач	ПК8	29782,8	4330,8	1081,8	378,0	93,6	32,4	14,4		
31	ПК9	11582,2	1684,2	420,7	147,0	36,4	12,6	5,6		

7.2. Локальный объект

Для того чтобы оценить перспективность той или иной выявленной аномальной зоны, необходимо одним из известных способов определить обобщенный показатель $\alpha = 1/(\sigma \mu_0 r^2)$ проводящего объекта по скорости затухания переходного процесса. Существует несколько различных способов определения показателя а. Предпочтительны способы, в которых определятся значение показателя $\alpha(t)$ во всем диапазоне времени измерения переходной характеристики.

Одним из таких способов является определение $\alpha(t)$ по отношению производной сигнала по времени к величине сигнала. Практически $\alpha(t)$ определяется из соотношения

$$\alpha(t) = \frac{\Delta[U(t)/I]}{\pi^2 \Delta t U_{cp}(t)/I}$$

где $\Delta[U(t)/I]$ — разность нормированных значений переходной характеристики в начале и конце небольшого интервала Δt (сек); $U_{cp}(t)/I$ – среднее значение переходной характеристики в данном интервале.

Для того чтобы произвести такие вычисления, кривая U(t)/I разбивается на участки Δt длительностью 1 мс. По каждому из участков вычисляется $\alpha(t)$ по формуле и строится зависимость α от времени. Кривая $\alpha(t)$ стремится к горизонтальной асимптоте, соответствующей истинному значению показателя α . Из наблюденных кривых распределения вертикальной и горизонтальной составляющих определяют глубину залегания h. Для шара $h=b_x=b_z$, где b_z – ширина аномалии вертикальной составляющей на уровне 0,5 ее максимума, а b_x – расстояние между экстремумами горизонтальной составляющей.

По найденному α, для известного *t* по графикам находят значение переходной функции *L*. После этого можно найти радиус сферы

$$r = h \left[\frac{2R \cdot 10^{-6} \cdot U_z / I}{\mu_0 S_{II} L(\alpha t)} \right]$$

где *r* – радиус шара, *R* – сторона генераторной петли, *S*_п – площадь приемной рамки.

По найденным значениям α и *r* определяется электропроводность $\sigma = 1/(\alpha \mu_0 r^2)$.

<u>Задание</u>

По полученным данным определить геометрические характеристики аномалии (*h* и *r*) и проводимость объекта.

R = 200 м; S = 5100 м²; шаг между ПК=10м.

Таблица 7.2.

ΔT , мс	<i>U/I</i> , мкВ/А
1	513,5
2	282
3	164,97
4	99,7
5	63,45
6	40,89
8	18,33
10	8,66
12	4,23
14	2,1

Таблица 7.3.

ПК,	$U_x/I,$	U_z/I ,	ПК,	$U_x/I,$	$U_z/I,$
t=6 мс	мкВ/А	мкВ/А	t=6 мс	мкВ/А	мкВ/А
1	-0,564	-1,41	10	39,48	36,66
2	-1,128	2,82	11	33,84	26,79
3	-3,384	3,102	12	22,56	18,33
4	-18,048	3,948	13	16,92	12,69
5	-22,56	8,46	14	11,28	8,46
6	-39,48	14,1	15	5,64	5,64
7	-45,12	23,97	16	5,64	4,23
8	-22,56	35,25	17	5,64	2,82
9	16,92	40,89	18	0	1,41

Контрольные вопросы:

- 1. Возможно ли изучение разреза перекрытого высокоомным экраном с помощью МПП?
- 2. Что такое момент генераторного контура в методе переходных процессов?
- 3. При каких условиях круглую петлю с переменным током можно аппроксимировать вертикальным магнитным диполем?
- 4. Какими факторами определяется толщина скин-слоя?
- 5. Для чего соотношение длительности импульса к длительности паузы в импульсных методах электроразведки делают больше 3?

8. Метод незаземленной петли

8.1. Интерпретация результатов метода НП

Интерпретация результатов полевых наблюдений в низкочастотной индуктивной электроразведке гармоническими полями заключается в определении параметра объекта $p=\sigma\mu\omega a^2$, (где σ – проводимость объекта; μ – его магнитная проницаемость; ω – круговая частота; a^2 квадрат характерного размера (допустим, радиуса *r*), а также в оценке его размеров, глубины залегания, проводимости, и для магнитных объектов его магнитной проницаемости и соотношения между остаточной и индуктивной намагниченностью объекта Q=J_n/J_i.

В зависимости от того, обладает или нет объект исследования повышенной магнитной проницаемостью по отношению к вмещающим породам, способы интерпретаций несколько различаются. Оценить, является ли тело магнитным по отношению к вмещающим породам, можно на основании сопоставления аномалий по амплитуде и фазе на нескольких частотах. Аномалии над высокомагнитными проводящими объектами характеризуются уменьшением величины аномалии амплитуды H_z с ростом частоты изменением знака аномалии на определенной частоте и последующим достижением асимптотических значений на достаточно высоких частотах.

Полученные в результате полевых наблюдений графики подвергают первичной обработке: разделению поля на нормальное поле петли и аномальную часть, связанную с объектом. Разделение может быть выполнено несколькими способами:

- 1) Зная точное положение вершин петли и ее сторон, путем расчета $H_{z0}(f)$ по специализированным программам.
- 2) Путем расчета нормального поля пели по упрощенной формуле для профиля проходящего через центр петли $H_{z0} = A(r_1 / S_1 + r_2 / S_2)$ где r_i расстояния от точки измерения до вершин петли S_i площади прямоугольников построенных на от-

3) Графически проводя от руки предполагаемый график $H_{z0}(f)$, считая, что поле на краях профиля совпадает с $H_{z0}(f)$.

После расчета производится нормировка аномального поля нормальным полем петли в каждой точке профиля по формуле $H_z^a = (|H_{ziaa}| - |H_{z0}|)/|H_{z0}|$, где H_{zhab} –наблюденные значения поля, H_{z0} –значения нормального поля петли в соответствующей точке, H_z^a – значения аномального поля, используемые в дальнейшей интерпретации.

8.2. Проводящий немагнитный объект.

Тела с изомерным горизонтальным поперечным сечением (сферические, цилиндрические объекты).

Интерпретация сводится к определению параметра тела $p=\sigma\mu\omega a^2$ глубины залегания до центра поперечного сечения *r* и верхней кромки *h*, проводимости объекта σ .

1. Определить параметр тела *p*. Наиболее распространенными способами определения параметра являются способы оценки *p* по обобщенной частотной характеристике амплитуды аномального поля (абсолютные измерения).

Для определения величины параметра по обобщенной частотной характеристике следует построить на прозрачном билогарифмическом бланке с модулем 6,25 см частотную характеристику аномалии амплитуды вертикальной компоненты магнитного поля H_z^a и добиться совпадения с палеточной кривой, имеющей индекс $\mu_{\text{отн}}=1$. После совмещения экспериментальной и палеточной кривых:

- 1. Против значения частоты 1 Гц экспериментальной частотной характеристики можно прочитать на палетке искомую величину *p* (в некоторых случаях удобнее против произвольного значения частоты *f* считать величину *p/f*).
- 2. Определяется асимптотическое значение H_z^a , при $\omega \rightarrow 0$

Далее, зная, что $\omega = 2\pi f$, а $\mu = \mu_0$, где $\mu_0 = 4\pi 10^{-7}$ Гн/м можно рассчитать произведение σa^2 .

2. Определить глубину залегания до центра объекта. Определение глубины залегания до центра поперечного сечения производится по наблюденным графикам распределения H_z^a . Для этого можно привлечь любой из известных способов оценки по характерным точкам, например:

 $r = 0,7X_{1,2}$ для сферы; $r = 0,5X_{1,2}$ для цилиндра,

где $X_{1,2}$ - расстояние между точками пересечения графика H_z^a с осью X.

3. Определить радиус сеченая тела. Значение а можно определить из соотношений $H_z^a = (a/r)^3$ для сферических тел или $H_z^a = (a/r)^2$ для цилиндра.

4. Определить проводимость тела. Зная радиус сечения тела, нетрудно оценить его проводимость, поскольку величина σa^2 была определена ранее (см. п. 1).

5. Определить глубины до верхней кромки тела h. Величину h рассчитываем по формуле: h=r-a.

<i>aoninga</i> 0.1.

ПК	f=19,5	f=78	f=312	f=1200	ПК	f=19,5	f=78	f=312	f=1200
150	929	935	936	937	510	498	159	57	23
160	890	895	897	897	520	500	168	69	35
170	856	860	862	862	530	503	183	87	55
180	826	830	831	831	540	507	203	112	82
190	799	802	803	803	550	512	228	142	114
200	775	777	778	778	560	518	255	176	150
210	753	754	755	755	570	525	284	212	188
220	734	734	733	733	580	532	315	249	228
230	717	714	714	713	590	539	345	287	268
240	701	696	695	694	600	546	375	324	307
250	686	679	677	676	610	554	404	359	344
260	673	663	659	658	620	561	431	393	380
270	661	646	642	641	630	569	457	424	413
280	649	631	625	623	640	577	482	453	444
290	638	615	607	605	650	585	504	480	472
300	628	598	589	586	660	593	526	505	499
310	619	581	570	566	670	601	545	529	523
320	610	564	550	545	680	610	564	550	545
330	601	545	529	523	690	619	581	570	566
340	593	526	505	499	700	628	598	589	586
350	585	504	480	472	710	638	615	607	605
360	577	482	453	444	720	649	631	625	623
370	569	457	424	413	730	661	646	642	641
380	561	431	393	380	740	673	663	659	658
390	554	404	359	344	750	686	679	677	676
400	546	375	324	307	760	701	696	695	694
410	539	345	287	268	770	717	714	714	713
420	532	315	249	228	780	734	734	733	733

ПК	f=19,5	f=78	f=312	f=1200	ПК	f=19,5	f=78	f=312	f=1200
430	525	284	212	188	790	753	754	755	755
440	518	255	176	150	800	775	777	778	778
450	512	228	142	114	810	799	802	803	803
460	507	203	112	82	820	826	830	831	831
470	503	183	87	55	830	856	860	862	862
480	500	168	69	35	840	890	895	897	897
490	498	159	57	23	850	929	935	936	937
500	497	155	53	19					

Сторона петли L=1000 м, шаг 10м (нумерация пикетов от края петли).

8.3. Проводящий и магнитный объект

Тела с изомерным горизонтальным поперечным сечением (сферические, цилиндрические объекты

Интерпретация сводится к определению параметра тела $p=\sigma\mu\omega a^2$ глубины залегания до центра поперечного сечения *r* и верхней кромки *h*, проводимости объекта σ .

1. Определить параметр тела *p*. Наиболее распространенными способами определения параметра являются способы оценки *p* по обобщенной частотной характеристике амплитуды аномального поля (абсолютные измерения);

Для определения величины параметра по обобщенной частотной характеристике следует построить на прозрачном билогарифмическом бланке с модулем 6,25 см частотную характеристику аномалии амплитуды вертикальной компоненты магнитного поля H_z^a . Зеркалировать ее относительно горизонтальной оси и добиться совпадения с одной из палеточных кривых. После совмещения экспериментальной и палеточной кривых:

- 1. Против значения частоты 1 Гц экспериментальной частотной характеристики можно прочитать на палетке искомую величину р.
- 2. Считывается индекс кривой µотн.
- 3. Определяется асимптотическое значение H_z^a , при $\omega \rightarrow 0$

Далее, зная, что $\omega = 2\pi f$, а $\mu = \mu_{\text{отн}}\mu_0$, где $\mu_0 = 4\pi 10^{-7}$ Гн/м можно рассчитать произведение σa^2 .

2. Определить глубины залегания до центра объекта. Определение глубины залегания до центра поперечного сечения производится по наблюденным графикам распределения H_z^a .

Для этого можно привлечь любой из известных способов оценки по характерным точкам, например:

r=0,7*X*_{1,2} для сферы;. *r*=0,5*X*_{1,2} для цилиндра,

где $X_{1,2}$ – расстояние между точками пересечения графика H_z^a с осью X.

3. Определить радиус сеченая тела. Значение а можно определить из соотношений $H_z^a = (a/r)^3$ для сферических тел или $H_z^a = (a/r)^2$ для цилиндра.

4. Определить проводимость тела. Зная радиус сечения тела, нетрудно оценить его проводимость, поскольку величина σa^2 была определена ранее (см. п. 1).

5. Определить глубину до верхней кромки тела h. Величину h рассчитываем по формуле: h=r-a

6. Определить Q_z . Соотношения между вертикальными составляющими остаточной и индуктивной намагниченности. Для оценки Q_z используются графики H_z^a , и ΔZ по профилю. Оценка Q_z производится следующим образом:

1. Определить $\Delta Z_{\text{прив}}$ (ΔZ в долях земного намагничивающего поля)

2. Оценить
$$Q_z = \left| \frac{\Delta Z_{\text{прив}}}{H_z^a} - 1 \right| = \frac{J_n^z}{J_i^z}.$$

Таблица 8.2.

ПІС	Ha%	Ha%	Ha%	Ha%	7T
11K	(f=19,5)	(f=78)	(f=312)	(f=1200)	Д , НІЛ
0	-0,54	-0,54	-0,47	-0,07	-231,49
1	-0,60	-0,60	-0,52	-0,08	-271,08
2	-0,67	-0,67	-0,58	-0,08	-319,48
3	-0,75	-0,75	-0,64	-0,10	-379,10
4	-0,83	-0,83	-0,71	-0,11	-453,04
5	-0,91	-0,91	-0,78	-0,12	-545,39
6	-0,99	-0,99	-0,86	-0,13	-661,48
7	-1,06	-1,06	-0,91	-0,14	-808,21
8	-1,09	-1,09	-0,94	-0,15	-994,34
9	-1,06	-1,06	-0,91	-0,14	-1230,68
10	-0,87	-0,87	-0,75	-0,12	-1529,41
11	-0,44	-0,44	-0,39	-0,06	-1901,64
12	0,45	0,45	0,39	0,06	-2351,61
13	2,15	2,15	1,85	0,28	-2861,66
14	5,21	5,21	4,48	0,67	-3362,60
15	10,40	10,40	8,93	1,35	-3682,02
16	18,58	18,58	15,92	2,41	-3480,08
17	30,18	30,18	25,94	3,93	-2239,83
18	43,98	43,98	37,81	5,71	522,21
19	55,94	55,94	48,12	7,28	4707,55
20	60,81	60,81	52,26	7,90	9152,44
21	55,94	55,94	48,12	7,28	12128,36
22	43,98	43,98	37,81	5,71	12705,20
23	30,18	30,18	25,94	3,93	11327,04

ПК	Ha%	Ha%	Ha%	Ha%	Z, нТл
	(1=19,5)	(1=/8)	(1=312)	(I=1200)	
24	18,58	18,58	15,92	2,41	9075,71
25	10,40	10,40	8,93	1,35	6811,31
26	5,21	5,21	4,48	0,67	4931,02
27	2,15	2,15	1,85	0,28	3511,18
28	0,45	0,45	0,39	0,06	2489,24
29	-0,44	-0,44	-0,39	-0,06	1769,80
30	-0,87	-0,87	-0,75	-0,12	1266,84
31	-1,06	-1,06	-0,91	-0,14	914,87
32	-1,09	-1,09	-0,94	-0,15	667,00
33	-1,06	-1,06	-0,91	-0,14	490,96
34	-0,99	-0,99	-0,86	-0,13	364,67
35	-0,91	-0,91	-0,78	-0,12	273,14
36	-0,83	-0,83	-0,71	-0,11	206,13
37	-0,75	-0,75	-0,64	-0,10	156,56
38	-0,67	-0,67	-0,58	-0,08	119,55
39	-0,60	-0,60	-0,52	-0,08	91,69
40	-0,54	-0,54	-0,47	-0,07	70,53

Сторона петли L= 1000 м, шаг по профилю 20 м, Z_0 = 45 000 нТл.

Контрольные вопросы:

- 1. На каких временах (частотах) поля преобладает влияние верхних слоев разреза?
- 2. При каких условиях круглую петлю с переменным током можно аппроксимировать вертикальным магнитным диполем?
- 3. С чем связано прекращение роста и выход на горизонтальную асимптоту частотной характеристики проводящего немагнитного объекта?
- 4. Препятствует ли высокоомный экран проведению работ методом незаземленной петли?
- 5. Почему измерения производят в среденй трети генераторной петли?
- 6. Для чего производится нормировка аномального поля нормальным полем петли?

9. Итоговое задание

На основании приведенных данных запроектировать комплекс электроразведочных работ с целью проведения доразведки (поиск пропущенных рудных тел) месторождения свинца и цинка (рис. 9.1.).

При проектировании указать:

- 1. Методы используемые для решения задачи (с обоснованием и предполагаемыми результатами);
- 2. Методику для каждого из запроектированных методов (шаг, масштаб, точность)
- 3. Аппаратуру и оборудование;
- 4. Форму представления результатов;
- 5. Способы обработки и интерпретации.

Участок сложен осадочно-вулканогенной толщей миоцена (мощностью 500 м) выделяются две пачки: нижняя, сложенная лавобрекчиями и туфами риолитов, и верхняя – рудовмещающая, представленная слоистыми пемзовыми туфами, брекчиями и экструзивами риолитового состава. На них залегают сланцы, образующие пласты мощностью от 10 до 30 м, и пемзовые туфы кислого состава. Встречаются субвулканические тела риолитов и дайки диоритов. Вулканическая структура участка при общем пологом залегании определяется экструзивными куполами и расположенными между ними локальными депрессиями, в которых чаще всего залегают рудные тела. Эти структуры осложнены синвулканическими разломами и зонами трещиноватости, служившими рудоподводящими каналами.

Рудные тела представлены главным образом согласными пластовыми и линзовидными залежами, в лежачем боку которых находятся жилы и штокверки. Линзовидные тела в плане имеют размеры десятки – первые сотни метров при мощности от 10 до 70 м. Выделяется несколько типов пирит-халькопирит-галенит-сфалеритовая, пирит-халькопиритовая, руд: пиритовая и кремнистая, содержащая сульфидные прожилки. Первые три типа относятся к сингенетичным, четвертый – к эпигенетичным образованиям. Главные минералы: рудные – пирит, халькопирит, сфалерит, галенит и тетраэдрит; нерудные – кварц, барит и гипс; второстепенные – борнит, гематит, аргентит и электрум. Текстуры руд – массивные, полосчатые, слоистые, брекчиевые, прожилковые и вкрапленные; структуры – метаколлоидные, колломорфные, глобулярные, аллотриоморфнозернистые, эмульсионные, решетчатые, интерстициальные и радиальнолучистые. Околорудные изменения выражены в аргиллизации, цеолитизации, окварцевании, серицитизации и хлоритизации вмещающих вулканических пород.

Устанавливается четкая вертикальная зональность в распределении различных типов руд в рудных телах. Верхние части их сложены массивными рудами. Затем они сменяются пиритовыми рудами, которые представлены вверху брекчиевыми разностями, а ниже – пылевидным пиритом, тонкорассеянным в кварц-серицитовых метасоматитах. На нижних горизонтах рудных тел развиты штокверки прожилковых кремнистых руд, содержащих халькопирит, сфалерит и галенит, а также барит.

Физические свойства пород приведены в таблице 9.1.

Таблица 9.1.

Порода	Удельное эл. сопротивле- ние (ом·м)	Поляризуе- мость	Магнитная восприимчи- вость, 10 ⁻⁵ ед.СИ
Туфы риолитов	800-1 000	1	3 000
Лавобрекчии	1 000-3000	1.2	500
Кремнистые песчано-сланцевые породы	800-1200	2	200
Песчано-сланцевые породы	200-400	1	50-60
Сланцы	500-700	1	600-700
Руды:			
а)Вкрапленные	50	30	1 000
б)Массивные	10	10	10 000
в)Окисленные руды	70	6	500

Физические свойства пород и руд

1 — вулканические риолитовые брекчин; 2 — туфобрекчин; 3 — туфы и лапиллиевые туфы; 4 — аргиллиты; 5 — пиритовая руда; 6 — желтая руда; 7 — черная руда; 8 — гипс; 9 — сульфидные прожилки

Рис. 9.1. Геологическое строение месторождения свинцово-цинковых руд.

Справочные материалы

]		
Марка провода	Диметр, мм	Масса 1 км, кг	Сопротивле- ние 1 км, Ом	Сопротивле- ние изоляции, кОм	Разрывное усилие, Н	Назначение
ГПМП	5,6	73	3	100	1350	3С, МПП, ЧЗ ВП, ВЭЗ (<i>АВ</i> =10 км)
ГПСМП	4,6	38	10	100	2000	То же ВЭЗ (<i>АВ</i> =3÷10 км)
ГПСМПО	3,2	14	50	100	1000	ВЭЗ (<i>АВ</i> =0,5÷1 км)
ПСРП-2	2,5	9,3	100	100	-	ВЭЗ (АВ=0,5км)
ПСРП-1	1,4	5,5	300	100	_	То же

Геофизические провода [3

Последовательность разносов MN и коэффициенты установок ВЭЗ

$k = \pi$	$AM \cdot AN$
$\kappa = \pi$	MN

IVIN							
№ замера	АВ/2, м	MN, M	к, м	№ замера	АВ/2, м	MN, M	к, м
1	3	2	12,6	18	325	150	2093,3
2	4,5	2	30,2	19	500	150	5115,6
3	6	2	55,0	20	750	150	11657,3
4	9	2	125,6	21	750	500	3140,0
5	15	2	351,7	22	1000	150	20815,6
6	15	10	62,8	23	1000	500	5887,5
7	25	2	979,7	24	1500	500	13737,5
8	25	10	188,4	25	2000	500	24727,5
9	40	10	494,6	26	2000	1000	11775,0
10	65	10	1318,8	27	3000	500	56127,5
11	65	40	300,3	28	3000	1000	27475,0
12	100	10	3132,2	29	4500	1000	62800,0
13	100	40	753,6	30	4500	2000	30222,5
14	150	40	1734,9	31	6000	1000	112255,0
15	225	40	3942,7	32	6000	2000	54950,0
16	225	150	942,0	33	8000	2000	98910,0
17	325	40	8260,2	34	10000	2000	155430,0

Электроразведочный генератор "АСТРА"²

Электроразведочный генератор "АСТРА" используется для создания электромагнитного поля при проведении геофизических работ методами постоянного тока, вызванной поляризации, частотного зондирования и другими методами. Область применения генератора ограничивается решением гражданских задач, связанных с изучением электрических свойств грунтов и горных пород в естественном залегании.

Максимальная выходная мощность	100 Вт
Максимальное выходное напряжение	250 B
	1.00 мА, 5.0 - 250 кОм
	3.16 мА, 1.5 - 80 кОм
Значения выходного тока и соответст-	10.0 мА, 0.5 - 25 кОм
вующие диапазоны значений сопро-	31.6 мА, 150 - 8000 Ом
тивлений RAB	100 мА, 50 - 2500 Ом
	316 мА, 15 - 800 Ом
	1000 мА, 5 - 100 Ом
	"меандр" (прямоугольные разнопо-
Форма выходного тока	лярныеимпульсы без паузы)
	Первый ряд частот:
	0.076, 0.153, 0.305, 0.610, 1.22, 2.44,
	4.88, 9.77, 19.5, 39.1, 78.1, 156, 313,
	625, 1250, 2500 Гц
	Второй ряд частот:
Рабочие частоты:	0.042, 0.063, 0.083, 0.125, 0.167,
	0.250, 0.333, 0.500, 0.667, 1.00, 1.33,
	2.00, 2.67, 4.00, 5.33, 8.00, 10.7, 16.0,
	21.3, 32.0, 42.7, 64.0, 85.3, 128, 171,
	256, 341, 512, 683, 1024, 1365, 2048
	Гц
КПД	До 80 %
Погрешность стабилизации на актив-	0.5.%
ной нагрузке	0.5 /0
Длительность фронта на активной на-	
грузке	2 микросскунды
Диапазон рабочих температур	от - 20°С до + 50°С
Houngwould Hutoung	~ 12 В (минимум 9.5 В, максимум
папряжение питания	15.5 B)
Вес (без аккумулятора)	~2 кг
Габариты	200 × 173 × 113 мм

Основные характеристики

² С сайта www.nw-geophysics.ru

Текстовый ЖКИ	4 строки × 16 символов
	- рабочей частоты
	- величины выходного тока
	- напряжения аккумулятора
Текстовая индикация	- статуса (ожидание, работа, разрыв
	в АВ, низкое напряжение питания)
	- сопротивления нагрузки
	- выходного напряжения
	- работа- разрыв в АВ
Эвуковая индикация	- низкое напряжение питания
Клавиатура	12 кнопок
	- AB
Door over	- шунт 1 Ом
Газьсмы	- синхронизация
	- питание
Корпус герметичный	Стандарт IP-65

Батареи электроразведочные [3]

Марка батареи	Элемент	U, B	Емкость, А.ч	Разряд- ный ток, А	Macca, kr	Прим.
29-ГРМЦ-13	Mn-Zn	29	13	1	20	Последовательное
69-ГРМЦ-6	Mn-Zn	69	6	0,5	25	вкл. секций

Универсальный измеритель низкочастотных электромагнитных полей "МЭРИ-24"³

Измеритель МЭРИ-24 (Многофункциональный Электроразведочный Измеритель) предназначен для измерения параметров постоянного и переменного напряжения в полевых условиях при электроразведочных работах. Прибор позволяет проводить работы следующими методами:

- методом сопротивлений,
- ЧЗ-ВП,
- методом заряда.

В процессе наблюдений прибор измеряет входной сигнал, выполняет его обработку, выдает значения определяемых параметров на индикатор и записывает их в память. Кроме того, прибор позволяет просматривать на индикаторе и заносить в память выполненные в режиме реального времени

³ С сайта www.nw-geophysics.ru

записи сигнала. В дальнейшем результаты измерений могут быть перенесены на персональный компьютер для анализа посредством специального программного обеспечения.

Разрядность АЦП	24 бита
Уровень собственных шумов	не более 1 мкВ
Максимальное входное напряжение	не более 2 В
Входное сопротивление	5 Мом
Встроенная энергонезависимая па- мять	8 Мбайт
Интерфейс синхронизации с ПК	USB 1.1
Максимальная потребляемая мощ- ность	2 Вт
Внутренний источник питания	12 В, 3 А.ч
Внешний источник питания	12 B
Минимальное время работы от внутренних батарей	10 часов
Рабочие частоты, Гц:	Первый ряд частот: 0.019, 0.038, 0.076, 0.153, 0.305, 0.610, 1.221, 2.441, 4.883, 9.766, 19.53, 39.06, 78.13, 156.3, 312.5, 625.0 Второй ряд частот: 0.021, 0.032, 0.042, 0.063, 0.083, 0.125, 0.167, 0.250, 0.333, 0.500, 0.667, 1.000, 1.333, 2.000, 2.667, 4.000, 5.333, 8.000, 10.67, 16.00, 21.33, 32.00, 42.67, 64.00, 85.33, 128.0, 170.7, 256.0, 341.3, 512.0 Дополнительный ряд частот: 50, 60, 100, 120
Диапазон рабочих температур	-20 - +60°C
Габариты	190×150×80 мм
Macca	1,5 кг

Технические характеристики

Annapamypa AHY-3 [1]

Аппаратура АНЧ-3 предназначена для измерения кажущегося сопротивления геоэлектрического разреза на низкой частоте. Она состоит из стационарного и переносного генератора а также избирательного микровольтметра.

Основные хара	ктеристики
---------------	------------

Рабочая частота, Гц	4,88
Максимальная мощность генератора, Вт:	
стационарного	300
переносного	30
Максимальное напряжение генератора, В	
стационарного	350
переносного	250
Максимальный ток генератора, А	
стационарного	2
переносного	0,1
Измеряемое напряжение, мкВ	10–30000
Погрешность измерения напряжения, %	3
Масса генератора, кг	
стационарного	6
переносного	10
Масса микровольтметра	3,5

Удельные электрические сопротивления пород [Вахромеев, Зинченко, 2006], [Дортман, 1976]

Порода	ρ, Ом·м	Порода	ρ, Ом∙м		
1. Сиенит	$10^{3} - 10^{4}$	11. Известняк	$10^2 - 10^3$		
2. Граносиенит	10^{3}	12. Песчаник	$10 - 10^3$		
3. Гранит	$10^{3} - 10^{4}$	13. Глины	1–50		
4. Диорит	10^{3}	14. Ископаемые угли:			
5. Габбро	$10^2 - 10^3$	бурые	$10 - 10^3$		
6. Амфиболит	$10^2 - 10^4$	каменные	$10^2 - 10^4$		
7. Базальт	$10^{3} - 10^{5}$	антрацит	$10^{-2} - 10^{2}$		
8. Гнейс	$10^{3} - 10^{5}$	15. Жидкости:			
9. Глинистый сланец	$10^2 - 10^3$	нефть	$101^{12} - 10^{14}$		
10. Мрамор	$10^{3} - 10^{8}$	речные воды	$10 - 10^3$		
		морские воды	0,15–1,5		

Некоторые обозначения, применяемые в электроразведке

Обозначение	Пояснение	Размерность	C/B*
Ε	Напряженность электрического поля	В/м	В
Н	Напряженность магнитного поля	А/м	В
В	Магнитная индукция	Тл	В
E_x, E_y, E_z	Компоненты электрического поля	В/м	С
H_x, H_y, H_z	Компоненты магнитного поля	А/м	
ρ	Удельное электрическое сопротивление	Ом·м	C
ρ _κ	Кажущееся удельное электрическое сопро-	0	С
	тивление (кажущееся сопротивление)	Ом∙м	
	Параметр аналогичный кажущемуся удель-		С
$ ho_{\omega}$	ному электрическому сопротивлению при	Ом·м	
	частотных зондированиях.		
ρ _T	Параметр аналогичный кажущемуся удель-		C
	ному электрическому сопротивлению в	Ом·м	
	магнитотеллурических методах		
ρ _τ	Параметр аналогичный кажущемуся удель-		C
	ному электрическому сопротивлению в ме-	Ом·м	
	тоде зондирования становлением.		
Ζ	импеданс	Ом	С
γ	Удельная проводимость	См/м	C
η	Поляризуемость	%	С
	Электрическая постоянная (абсолютная ди-		С
ϵ_0	электрическая проницаемость вакуума)	$\Phi/_{M}$	
Ŭ	$\epsilon_0 = 10^{-9}/36\pi \Phi/M$		
	Абсолютная диэлектрическая проницае-		С
Ea	мость	Ψ/M	
ε _{отн}	Относительная диэлектрическая проницае-		C
	мость	-	
μ ₀	Магнитная постоянная (абсолютная маг-		С
	нитная проницаемость вакуума)	Гн/м	
	$\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma \mathrm{H/M}$		
μ_a	Абсолютная магнитная проницаемость	Гн/м	С
$\mu_{\text{отн}}$	Относительная магнитная проницаемость	-	
T	Период	с	С
f	Частота	Гц	С
λ	Длина волны	М	С
ω	Круговая частота	рад/с	С
S	Продольная проводимость	См	С
Т	Поперечное сопротивление	Ом·м ²	С

Список литературы

- 1. Бобровников Л.З., Кадыров И.Н., Попов В.А.. Электроразведочная аппаратура и оборудование. М.: Недра, 1985.
- 2. Доброхотова И.А., Практикум по интерпретации результатов полевых наблюдений в методах электроразведки. Москва, идз. МГРИ, 1985 г.
- 3. Якубовский Ю.В., Ренард И.В., Электроразведка. Москва, Недра, 1991 г.